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Psychological science influences all spheres of society. 
We are constantly bombarded by psychological findings 
when reading popular news outlets, watching television 
shows, or browsing the Internet. Psychology informs 
the algorithms that determine the friends we make, the 
movies we watch, and the music we listen to. Research 
in the field also has profound implications—it influ-
ences school curricula (U.S. Department of Education, 
2015), plays an active role in judiciary decisions (Suggs, 
1979), and shapes societal policies, affecting the lives 
of millions (Halpern, 2014).

The widespread appeal of psychological science is 
especially palpable when research purports large 
changes with reasonably simple manipulations, embed-
ded in a framework that appears to reduce individual 
differences or inequalities (Moreau, Macnamara, & 
Hambrick, 2019). A few minutes spent feet apart, hands 
on hips, and chin upward can help us land our dream 
job at the next interview (Carney, Cuddy, & Yap, 2010); 
consuming sugary lemonade restores our ability to 
exert self-control (Gailliot et al., 2007). Other manipula-
tions are thought to elicit a range of remarkable (and 
potentially lasting) effects; for example, being exposed 

to structured events makes us more willing to pursue 
personal goals (Kay, Laurin, Fitzsimons, & Landau, 2014), 
whereas holding a pen between our teeth lets us see life 
in a more cheerful way (Strack, Martin, & Stepper, 1988). 
The implicit demands for sensational, headline-grabbing 
findings feed back into research programs, dictating the 
pace of science as well as the type of research being 
incentivized (e.g., Lilienfeld, 2017).

In recent years, the notion that behavior or abilities 
can be easily influenced via experimental manipula-
tions has been called into question. Large, well-powered 
studies have failed to replicate all of the effects discussed 
above, from power posing (Garrison, Tang, & Schmeichel, 
2016) to ego depletion (Hagger et al., 2016), structure 
seeking (Klein et al., 2018), and facial feedback (Acosta 
et al., 2016), casting serious doubt on the malleability 
of behavior, at the very least following these specific 
manipulations. One could argue, however, that the 

950696 PPSXXX10.1177/1745691620950696MoreauA Reappraisal of Cognitive-Intervention Research
research-article2020

Corresponding Author:
David Moreau, School of Psychology & Centre for Brain Research, 
University of Auckland 
E-mail: d.moreau@auckland.ac.nz

Shifting Minds: A Quantitative Reappraisal  
of Cognitive-Intervention Research

David Moreau
School of Psychology & Centre for Brain Research, University of Auckland

Abstract
Recent popular areas of research in psychology suggest that behavioral interventions can have profound effects on 
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include claims that low-cost, noninvasive manipulations of the environment can greatly affect individual performance. 
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ramifications of these research areas are limited and 
therefore that failures to replicate such findings have 
little impact on individuals and society.

This argument hardly holds for a number of related 
areas with well-established, direct applications, often 
at the institutional level. For example, several research 
programs have flourished on the basis of the notion 
that cognitive abilities can be substantially influenced 
by relatively short interventions. In particular, four areas 
of research have generated great interest—brain train-
ing, video gaming, mindset, and stereotype threat. 
These areas are all aimed at improving cognitive per-
formance either by targeting cognitive abilities directly 
(brain training, video gaming) or by focusing on barri-
ers thought to impede cognitive performance (mindset, 
stereotype threat).

Beyond their widespread popularity, the goal of each 
of these areas of research differs from that of other 
means of cognitive improvement that have come under 
scrutiny in recent years, such as bilingualism (Lehtonen 
et al., 2018), chess and music training (Sala & Gobet, 
2017), or physical exercise (Diamond & Ling, 2019). 
Although the latter bring about a number of benefits 
(i.e., mastery of another language, the game of chess, or 
a musical instrument; keeping fit and healthy), irrespec-
tive of the evidence for cognitive gains, there are impor-
tant opportunity costs associated with brain-training, 
video-gaming, mindset, and stereotype-threat interven-
tions, and individual and collective decisions rest primar-
ily on the reliability of scientific claims of improvement. 
For this reason, it is imperative to better understand the 
underlying mechanisms responsible for the observed 
mixed evidence. These four areas of research thus rep-
resent the focus of this article and are discussed in more 
detail hereafter.

Popular interventions for improving 
cognitive performance

Although the research paradigms of brain-training, 
video-gaming, mindset, and stereotype-threat research 
share many features, they also include important dif-
ferences in the way they propose to address limitations 
in cognitive performance. Brain-training programs are 
designed to directly influence cognitive abilities via 
targeted regimens; forms of training are either uni-
modal, in that they focus on a single cognitive ability 
(e.g., working memory training; Jaeggi, Buschkuehl, 
Jonides, & Perrig, 2008), or multimodal, including “brain 
exercises” targeting a range of abilities (for a review, 
see Simons et  al., 2016). Brain-training proponents 
argue that practicing these games or exercises can have 
a profound impact beyond the trained tasks, leading to 

generalized cognitive improvements that affect multiple 
domains, most notably academic (Klingberg et al., 2005; 
Loosli, Buschkuehl, Perrig, & Jaeggi, 2012) and profes-
sional (Adler et al., 2015).

Whereas the purpose of brain-training regimens is 
to elicit cognitive improvements, video gaming is a 
leisure activity that has been harnessed for cognitive 
gain in recent years. Therefore, video-gaming regimens 
intended to train cognition capitalize on content that 
has the primary purpose of entertaining. Studies have 
reported enhanced performance in a range of abilities, 
including visual processing (Green & Bavelier, 2003, 
2007), attention (Belchior et al., 2013), spatial ability 
(Goldstein et al., 1997; Okagaki & Frensch, 1994), and 
executive function (Basak, Boot, Voss, & Kramer, 2008; 
Green, Sugarman, Medford, Klobusicky, & Bavelier, 
2012). Given the central role of these abilities in many 
aspects of everyday life, it has been hypothesized that 
video-gaming improvements can generalize to a variety 
of real-world domains (Bavelier, Green, Pouget, & Sch-
rater, 2012).

Both brain-training and video-gaming regimens typi-
cally span weeks or months, yet some interventions are 
much shorter. In particular, interventions targeting 
beliefs about ability, rather than abilities themselves, 
either in the form of mindsets or stereotypes, have been 
reported to elicit improvements in a single or a couple 
of sessions. Mindset proponents argue that holding a 
malleable view of intelligence and other cognitive apti-
tudes (growth mindset) is associated with a range of 
positive outcomes, whereas holding a stable view of 
human aptitudes (fixed mindset) impedes learning, 
progress, and improvements in a variety of areas, 
including schools, businesses, and sports (Dweck, 2006; 
Yeager et al., 2019). In addition, beliefs about the mal-
leability of cognitive aptitudes appear to themselves be 
malleable (Blackwell, Trzesniewski, & Dweck, 2007; 
Paunesku et al., 2015); short interventions that promote 
a malleable view of aptitudes have a positive impact 
on cognitive performance, whereas the converse is true 
when feedback promotes a fixed mindset (Yeager & 
Dweck, 2012).

Likewise, research on the topic of stereotype threat 
suggests that cognitive performance is remarkably suscep-
tible to one’s belief about their own group performance—
if primed with a reminder that they belong to a particular 
group known to typically perform poorly on a test or 
task, individuals’ performance will tend to decrease. In 
this context, subtle manipulations of individual beliefs 
about their own group or statements suggesting that 
their group typically performs better or as well as others 
can sometimes completely erase preexisting differences 
(e.g., Steele & Aronson, 1995).
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Heterogeneity in cognitive-intervention 
research

All of these areas of research share a common rationale—
relatively brief interventions, typically ranging from a 
single session to several months, can profoundly affect 
individual performance on a range of tests, including 
cognitive tasks. Yet beyond their common rationale, 
these four areas of research also share another feature: 
They have all been questioned by recent evidence, 
either with failed replications or large meta-analyses 
(Melby-Lervåg, Redick, & Hulme, 2016; Sala, Tatlidil, & 
Gobet, 2018; Sisk, Burgoyne, Sun, Butler, & Macnamara, 
2018; Stoet & Geary, 2012). Although these contradic-
tory findings might not question the validity of the 
research areas themselves, they point out important 
limitations in our understanding of the hypothesized 
underlying mechanisms.

One point that has been relatively ignored but 
deserves further investigation is heterogeneity and its 
implications. Meta-analyses in cognitive-intervention 
research often include a wide range of effect sizes, from 
null to very large, yet few fall along that continuum. In 
this context, common statements based on average 
effect sizes can be misleading, as they fail to capture 
variability across effect sizes and may not be represen-
tative of prospective outcomes. This is especially prob-
lematic for intervention research, given that this line of 
work is inherently applied—if the main outcome 
observed at the meta-analytic level is not a plausible 
outcome at the level of an individual study, let alone 
an individual subject, correct interpretation is challeng-
ing, and informed decisions can be difficult.

Many measures have been developed to quantify 
heterogeneity in meta-analyses; for example, Cochran’s 
Q, I 2, and T 2 all provide some estimate of the variability 
or inconsistencies across studies (Deeks, Higgins, & 
Altman, 2011; Higgins & Thompson, 2002), often com-
pared with what could be expected by chance alone. 
As informative as these measures are, however, they do 
not provide any information about the latent distribu-
tions of effect sizes—all assume single underlying dis-
tributions.1 Yet this assumption is one that requires 
substantiation, as central-tendency measures (mean, 
median, and mode) can be greatly misleading when 
multiple distributions contribute to a meta-analysis.

Recent methodological developments have made it 
possible to further characterize heterogeneity in meta-
analyses beyond traditional measures. For example, 
mixture modeling has been proposed as a promising 
framework for identifying and modeling multiple sub-
populations of effect sizes (Moreau & Corballis, 2019) 
when the central-limit theorem does not apply. The 
overall idea is straightforward: Mixture modeling enables 
probabilistic inferences about the presence of multiple 

subpopulations and allows estimating the correspond-
ing “mixing weights”—that is, the respective propor-
tions of studies that are thought to belong to each 
subpopulation. For example, the mixture of two distri-
butions A and B with mixing weights of .6 and .4 
implies that 60% of the effect sizes are thought to 
belong to subpopulation A and 40% to subpopulation 
B. One can then estimate the mean of each subpopula-
tion, often providing a much more accurate estimate of 
the overall effect sizes in a research area.2

The importance of estimating mixture distributions 
is often illustrated with the example of height: Although 
the mean height in the United States is 168.8 cm (Fryar, 
Gu, & Ogden, 2012), this value relates to an overall 
distribution that conflates two rather distinct subpopu-
lations: men and women. In this context, referring to 
separate measures of central tendency for the male and 
female subpopulations is much more informative (e.g., 
mean height for men is 175.9 cm and for women, 162.1 
cm) and helps guide decisions across a range of 
domains. In psychology, failures to account for mixture 
distributions can even be more consequential, particu-
larly in cases in which the overall mean is not a possible 
outcome for a single study or a single individual 
(Moreau & Corballis, 2019). Mixture modeling thus pro-
vides a flexible and powerful framework for exploring 
heterogeneity in meta-analyses, especially when mul-
tiple, hidden subpopulations are thought to contribute 
to an overall distribution of effect sizes.

Current study

The rationale for this study was threefold. First, recent 
work in our group has underlined that a number of 
research areas in psychology appear to overemphasize 
the role of the environment on human performance, 
including in the context of cognitive interventions 
(Moreau et al., 2019). In addition, brain training, video 
gaming, mindset, and stereotype threat are research 
areas that have all gained traction recently, and there 
are large-scale efforts to replicate early findings or to 
meta-analyze results (Forscher et  al., 2019; Melby-
Lervåg et al., 2016; Sala et al., 2018; Sisk et al., 2018; 
Stoet & Geary, 2012), which motivated inclusion in the 
current study. Second, recent failures to replicate early 
findings in cognitive-intervention research, together 
with substantial heterogeneity in effect sizes, suggest 
that current theoretical frameworks of cognitive 
improvements are weak, thus hindering fine predictions 
at the individual level. Such lack of predictive power 
suggests that a closer look at the literature could be 
beneficial. Finally, mixture modeling has been estab-
lished as an important tool for providing further insight 
into existing data (Gronau, Duizer, Bakker, & Wagenmakers, 
2017; Nord, Valton, Wood, & Roiser, 2017), including in 
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the context of meta-analyses (Moreau & Corballis, 2019), 
with the potential to uncover new, promising directions 
for future research.

In line with this rationale, I aimed to systematically 
and quantitatively investigate how cognitive interven-
tions compare to other areas of research. Using a data-
driven, preregistered method based on mixture 
modeling and including 111 meta-analyses, I tested the 
hypothesis that cognitive-intervention research presents 
specific characteristics that differ from studies in the 
broader field of psychology. Specifically, I examined 
whether effect sizes were better characterized by a 
single- or multicomponent distribution for each meta-
analysis, following the predefined criteria outlined here-
after. The procedure was designed to determine whether 
individual studies within a meta-analysis are compara-
ble, stemming from a common, coherent theoretical 
framework, or fundamentally discrepant so as to suggest 
hidden moderators that warrant further investigation.

Method

The present study was preregistered on OSF on April 
6, 2019. The preregistration describes the research ratio-
nale, inclusion and exclusion criteria, modalities for data 
extraction, analyses, and diagnostics. All scripts and data 
have been made available at https://osf.io/ce9vr/.

Inclusion criteria and data extraction

Meta-analyses in the field of brain training, video gam-
ing, mindset, and stereotype threat (cognitive-intervention 
studies) and meta-analyses in the broader field of psy-
chology (control studies) were included. Inclusion cri-
teria and data extraction were adapted for each group; 
the specific procedure is described hereafter.

Cognitive-intervention meta-analyses.  Meta-analytic 
data were obtained for each of the four fields of research 
considered on the basis of the following criteria: (a) the 
article had to have been published in the past 5 years; (b) 
data from the article had to be either available openly on 
a repository (e.g., Open Science Framework, GitHub) or 
available on request (for further details, see Table S1 in 
the Supplemental Material available online); and (c) where 
multiple publications were eligible, articles that were more 
general (e.g., adult vs. older adult populations) and that 
were more comprehensive (as defined by the total number 
of effect sizes included in the final meta-analytic sample) 
were selected. In accordance with the above criteria, data 
were extracted from the following publications: Melby-
Lervåg et al. (2016; brain training); Sala et al. (2018; video 
gaming); Sisk et  al. (2018; mindset); and Lamont, Swift, 
and Abrams (2015; stereotype threat).

Control meta-analyses.  A larger search was performed 
for meta-analyses across subfields to establish an overall 
base rate for multicomponent distributions in psychology. 
Specifically, three of the major outlets publishing meta-
analyses in psychology (Psychological Science, Perspec-
tives on Psychological Science, and Psychological Bulletin) 
were surveyed on October 23, 2019, for studies published 
in the past 5 years (2015–2019). Meta-analyses were 
selected on the basis of criteria (a) and (b) discussed above, 
and criterion (c) discussed above was adapted to include 
all relevant publications. This search resulted in 247 refer-
ences across the American Psychological Association’s 
PsycArticles database and the Association for Psychological 
Science’s journal website (https://journals.sagepub.com/
aps). These references included a number of articles that 
were not relevant to the current study, such as editorials  
(n = 2), commentaries (n = 9), replies (n = 4), reviews (n = 
5), corrections (n = 1), replications (n = 1), repeats (n = 18), 
articles that contained the relevant keywords but were not 
original meta-analyses (n = 51), articles for which effect 
sizes could not be obtained (n = 38) or that included seri-
ous formatting issues (n = 8), and articles already included 
in the sample of cognitive-intervention studies (n = 3). A 
total of 107 studies met all inclusion criteria (for a full list 
that includes intervention and control studies, see Table S1 
in the Supplemental Material). A breakdown of the inclu-
sion process is described in a Preferred Reporting Items for 
Systematic Review and Meta-Analysis Protocols flow dia-
gram (Fig. 1), together with saved search records (online 
repository at https://osf.io/ce9vr/) for reproducibility.

Analyses

A method previously described in Moreau and Corballis 
(2019) was adapted for the purpose of this article. The 
method is based on mixture modeling, a framework 
that allows probabilistic assessments of the presence 
of subpopulations within an overall population, 
together with their estimation. In the context of meta-
analyses, this approach has shown promise in the 
detection of different clusters (i.e., components) in a 
distribution of effect sizes (Moreau & Corballis, 2019). 
The framework follows from Gaussian mixture models 
(for a primer, see Appendix A in Moreau & Corballis, 
2019).

The implementation detailed in Moreau and Corballis 
(2019) and in this article uses the expectation-maximization 
(EM) algorithm to identify underlying distributions of 
effect sizes and to compute the respective probabilities 
that each effect size would belong to a given distribu-
tion (for an accessible primer, see Do & Batzoglou, 
2008). The EM algorithm was run until convergence 
(the point of equilibrium in the algorithm), defined as 
changes in log-likelihood values smaller than 10−2 (ε). 

https://osf.io/ce9vr/
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For each meta-analysis, the following metrics were esti-
mated: (a) an index of confidence in a multicomponent 
model (log-likelihoods; higher values indicate better 
model fit), (b) posterior estimates, (c) the estimated 
mixing weights (λ, or proportion of effect sizes belong-
ing to a given subpopulation), and (d) the correspond-
ing (estimated) density distributions of effect sizes.

Robustness checks

Multicomponent solutions inferred from log-likelihoods 
were confirmed with the Bayesian information criterion 

(BIC). The latter penalizes the model according to the 
total number of parameters and therefore favors simpler 
models (everything else being equal). Because log-
likelihoods do not penalize model complexity, solutions 
based purely on these estimates might be detrimental 
to model parsimony. The BIC allows balancing model 
fit (indexed by log-likelihoods) against the total number 
of model parameters—the larger the BIC, the stronger 
the evidence for the model and number of clusters.3 
Finally, robustness was further assessed with semipa-
rametric and nonparametric versions of the EM algo-
rithm to check for consistency across a range of 

Criteria for Study Inclusion

Full Text Articles 
Evaluated for Eligibility

(n = 247)

• Meta-Analysis Published in the Past 5 Years in One of the Following Three Journals: 

• Data Available:
From the Article 
From an Online Repository (e.g., OSF, Github, Journal Repository) 
On Request (E-mail to Authors; See Supplemental Material for Details)

• Data Had To Be Original (i.e., the Meta-Analysis Should Not Report New Analyses on an
Existing Meta-Analysis)

Perspectives on Psychological Science
Psychological Science

Psychological Bulletin

Full Text Articles Evaluated but Excluded (n = 140)

• Formatting Issues (8)
• No Effect Size Available (38)
• Editorials (2)
• Commentaries (9)
• Replies (4)
• Reviews (5)
• Correction (1)
• Replication (1)
• Repeats (18)
• No Meta-Analysis (51)
• Already Included In Intervention Studies (3)

Studies Included (N = 107)

Search 

Searching Online Publications From:
• The American Psychological Association (APA)
• The Association for Psychological Science (APS)

Fig. 1.  Flow diagram for the control studies. These meta-analyses were compared with the cognitive-
intervention meta-analyses (brain training, video gaming, mindset, and stereotype threat).
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assumptions, or lack thereof—for details, see the code 
for the R software environment (Version 3.6.0; R Core 
Team, 2019).

Results

Two sets of complementary findings are reported here-
after. In the first section, I present empirical results 
based on the data extracted from the meta-analyses 
(intervention and control studies). Because probabilistic 
inference of latent distributions is inevitably prone to 
error, in the second section I report the results of simu-
lations intended to gauge the validity and reliability of 
the method used in this article.

Meta-analyses

In the current implementation, multicomponent solu-
tions were restricted to two components (bimodal distribu-
tions) to favor parsimony because estimating the precise 
number of clusters has been shown to increase uncertainty 
(e.g., McLachlan & Peel, 2000) and was not the primary 
purpose of this study. Results indicated a multicomponent 
mixture solution for all cognitive-intervention meta-
analyses (see Table 1 and Fig. 2) based on log-likelihood 
and the BIC. Both methods were consistent, providing 
strong evidence for the presence of multiple subpopu-
lations in all cases. When moderator analyses existed 
in the original meta-analyses, moderators were checked 
against the clusters identified from the mixture model-
ing algorithm to determine whether they matched. 
However, latent distributions tapped variation that 
could not be adequately explained by known modera-
tors. Results held with fewer (semiparametric mixture) 
or no parametric assumptions, indicating that the 
observed results did not hinge on specific assump-
tions about underlying distributions; on the contrary, 
results were reproduced with a wide range of reason-
able assumptions.

Control meta-analyses showed a different pattern. Of 
the effect-size distributions included in the 107 control 
studies, only 38% showed evidence for a multicomponent 

solution (see Fig. 3). Moreover, the number of meta-
analyses exhibiting multiple subpopulations was much 
lower when assumptions of normality were relaxed, 
either with semiparametric or nonparametric implementa-
tions (for details, see R code). Together, these results 
indicate that the pattern observed for the four domains 
of interest does not generalize to psychological findings 
more broadly; rather, it appears to be specific to a few 
subfields of study. Exploratory analyses per subfield 
within psychology (cognitive, social, clinical) showed that 
the number of meta-analyses best characterized by mul-
tiple components was higher for clinical psychology 
(44%) and lower for social psychology (34%), cognitive 
psychology falling in between (38%). Because the four 
areas of research that are the focus of this article fall 
either under the cognitive or under the social category, 
it could be argued that these two subsets represent 
more adequate controls than psychology as a whole. 
Regardless, evidence was equally robust when using 
meta-analyses in the field of cognitive psychology as 
comparison and slightly stronger when contrasting 
with social-psychology studies.

Simulations

A set of simulations was run to confirm that the algo-
rithm performed adequately in the specific context of 
the current study (for R code and details, see https://
osf.io/ce9vr/). For each of the 107 control meta-analyses, 
the number of effect sizes, the mean, and standard 
deviation were extracted from the observed data to 
generate random Gaussian distributions with matching 
numbers of observations and parameters (mean and 
standard deviation) between empirical and simulated 
data. This procedure yielded 107 simulated distributions 
with the same parameters as the empirical data, each 
with a clear latent Gaussian distribution. Given built-in 
univariate assumptions (i.e., all distributions were nor-
mal), it was expected that the mixture model would 
favor single-component solutions most of the time, 
except for the occasional misclassification. Results 
showed that single-component solutions were preferred 

Table 1.  Mixture-Model Fit for All Cognitive-Intervention Meta-Analyses

Research area N (ES) Log-likelihood BIC λ µ

Brain training 854 −321.23 −1,130.37 .84/.16 0.16/1.01
Video gaming 359 −160.13 −591.59 .19/.81 −0.06/0.10
Mindset 43 −17.88 −64.46 .40/.60 0.08/0.18
Stereotype threat 82 −31.28 −147.58 .58/.42 −0.06/0.62

Note: The total number of effect sizes in the meta-analysis, parametric mixture-model fits for a two-
component solution (log-likelihood and BIC), mixing weights (λ), and distribution means (µ) are 
shown for each research area. BIC = Bayesian information criterion; ES = effect size.

https://osf.io/ce9vr/
https://osf.io/ce9vr/
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98% of the time (2% misclassification; i.e., false posi-
tives), indicating that the algorithm performed extremely 
well when the underlying distribution was a single 
Gaussian.

Likewise, the algorithm was evaluated when latent 
bimodal distributions were simulated from control 
study parameters. In this bimodal scenario, multicom-
ponent solutions were preferred 76% of the time (24% 
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misclassification; i.e., false negatives); that is, the right 
decision was made three out of four times. Note that 
the asymmetry between accuracy for single versus mul-
ticomponent characterizations (98% vs. 76%) is by 
design: The algorithm implemented in this study was 
biased toward univariate assumptions unless there was 
enough evidence for multiple underlying components. 
The results reported were robust to departures from 
typical distributional assumptions (i.e., Gaussian), and 
semiparametric and nonparametric implementations 
yielded similar performance. The R code provided with 
this article allows active exploration with varying 
parameters and assumptions.

Discussion

The current study aimed to provide a quantitative reap-
praisal of the literature in the domains of brain training, 
video gaming, mindset, and stereotype threat using four 
recent meta-analyses and a total of 1,338 effect sizes. 
The question is whether the distributions of effect sizes 
in cognitive-intervention research show multimodal 
properties. That is, were effect sizes clustered, or did 
they tend to follow a single distribution? In all four 
domains, there was evidence for multicomponent solu-
tions, suggesting that more than one population of 
effect sizes contributed to each distribution. This find-
ing contrasts with comparative analyses in the broader 

field of psychology, as evidenced by 107 meta-analyses 
published between 2015 and 2019 in three major out-
lets. In this control subset, only about a third of meta-
analyses showed reasonable evidence for multimodality 
in their samples of effect sizes. There was only minor 
variation across cognitive, social, and clinical subfields, 
without evident implications for the current study. 
Together, these findings suggest that cognitive-intervention 
research shows characteristics that are not typical of 
the field of psychology as a whole or of relevant sub-
fields within psychology.

What does multimodality mean in the 
context of cognitive interventions?

This study, the first to systematically model and char-
acterize latent distributions of effect sizes in the context 
of cognitive-intervention research, provides novel infor-
mation that supports recent advances in our under-
standing of cognitive malleability (Moreau et al., 2019; 
Sala & Gobet, 2017). This quantitative reappraisal has 
a number of implications for our understanding of cog-
nitive improvement via interventions; most importantly, 
it suggests that even when inferred from well-conducted, 
comprehensive meta-analyses, claims based on central-
tendency measures such as mean effect size can be 
misleading and may not provide a solid basis for deci-
sions or policies. In the context of intervention research, 
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box plots, and density distributions for each meta-analysis within the broad field of psy-
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this is especially problematic, as it typically leads to 
conclusions that are not representative of expected out-
comes. For example, generic claims about small but non-
null effects for a given intervention, if based on mixtures 
of distributions, may convey little information with 
respect to potential applications. At the very least, this 
possibility should be factored into the decision process 
when seeking to implement large-scale interventions.

The approach presented in this article complements 
traditional measures of heterogeneity typically reported 
in meta-analyses. Although these measures are helpful 
in documenting the spread of effect sizes across the 
mean or median, they do not provide any information 
about the hypothesized source and characteristics of 
this variation beyond those explained by moderator 
analyses. In many instances, however, we might not 
recognize that a particular variable matters; there might 
be specific characteristics of samples, investigators, or 
protocols that are not typically being documented 
because we may not realize that they represent impor-
tant modulators of the observed effect or phenomenon. 
As a case in point, the cognitive-intervention literature 
typically includes a number of initial large effects later 
complemented by failures to replicate or by much more 
nuanced results. This pattern cannot be explained by 
random variation around single latent effect sizes; 
rather, it suggests the presence of moderators that have 
not been documented thus far. Ignoring heterogeneity 
in meta-analyses can be detrimental to the processes 
of inference and estimation, which has implications for 
power analyses, the precision of estimated effects, and 
replication research (Kenny & Judd, 2019). Methods 
such as mixture modeling are helpful for characterizing 
these variations, facilitating insight at the latent, rather 
than the observed, level, and enabling finer predictions 
that are testable and falsifiable.

Quantifying and characterizing heterogeneity across 
studies also has implications for the development of 
theoretical frameworks of cognitive improvement. A 
theoretical account that predicts interventions will work 
in specific settings, but not in others, is fundamentally 
different from one that can make more consistent pre-
dictions (Moreau & Corballis, 2019). As mentioned, such 
discrepancies in findings are often indicative of hidden 
moderators yet to be identified. For example, that brain 
training elicits improvement in some studies but not 
others, provided this finding is reliable, may be indica-
tive of unknown moderating factors that could prove 
to be critical. In this context, data-driven techniques 
such as mixture modeling focused on the characteristics 
of effect-size distributions can facilitate targeted 
searches for moderators and help refine epistemologi-
cal models of cognition.

Note that moderators do not have to relate to the 
intervention itself to be of influence—they could be 

embedded within the scientific process more generally. 
For example, multiple distributions of effect sizes could 
arise from well-known problems with current publish-
ing practices, such as publication bias (Franco, Malhotra, 
& Simonovits, 2014) or perverse incentives (Stephan, 
2012). However, for these issues to be the reason for 
the multimodality observed in cognitive-intervention 
research, they would need to exert a specific influence 
within these research areas that is mostly uncommon in 
other contexts, given the contrasting pattern observed in 
the broader field of psychology. Although a possibility—
for example, publication bias could be exacerbated in 
cognitive-intervention research given pressure toward 
extreme, newsworthy findings that have applied potential—
this hypothesis was beyond the current study.

Limitations of the current study

Before moving on to the broader implications of these 
findings, it should be pointed out that mixture-based 
assessments of multimodality remain probabilistic; that 
is, it cannot be definitively ascertained that the effect-
size distributions in all four areas of research arose from 
multiple subpopulations or that the distributions that 
did not show this pattern in the control studies are 
indeed unimodal. A number of recent contributions 
have shown that mixture modeling does not always 
provide reliable assessments, either with respect to the 
number of components in a multimodal solution or to 
the mixing weights themselves (McLachlan & Peel, 
2000). More specifically, mixture models can be affected 
by instabilities, most notably singularities of the likeli-
hood function, resulting in all or most of the variance 
from a single component being concentrated on a single 
data point. This problem often leads to infinite likeli-
hoods, effectively preventing convergence of the algo-
rithm (Bishop, 2006; Caudill & Acharya, 1998; Murphy, 
2012; Snoussi & Mohammad-Djafari, 2002).

In the current study, these potential limitations were 
mitigated in a number of ways. First, models were 
selected on the basis of log-likelihoods and confirmed 
via the BIC. This allowed combining methods that 
penalize complexity in a different way—either built in 
within model selection (BIC) or as an additional post-
estimation step (log-likelihoods). Second, many of the 
issues in mixture modeling relate to the specific number 
of components (i.e., how many latent distributions are 
there?), which can vary substantially depending on 
methodology, parameters, and assumptions. In an effort 
to alleviate most of these concerns, the current study 
was not concerned with the specific number of com-
ponents; rather, the goal was to characterize distribu-
tions as either unimodal or multimodal, irrespective of 
the specific number of estimated components. This 
method is much more robust to misclassifications 
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(Hunter & Lange, 2004; Moreau & Corballis, 2019), thus 
alleviating most of the typical concerns with mixture 
estimations.

Analyses of meta-analytic data were complemented 
by simulations with data-informed parameters to further 
quantify the performance of the algorithm in the spe-
cific context of the current study. If mixture modeling—
or clustering techniques more generally—are in certain 
conditions hypersensitive to discrepancies in effect 
sizes within an area of research, we would expect to 
observe a high rate of multicomponent distributions in 
other areas of research; this was not the case in the 
current study. In addition, for miscalibration to be prob-
lematic in the current case, it would need to translate 
into the mislabeling of unimodal distributions as mul-
timodal, yet results showed adequate reliability when 
using simulated distributions including the same param-
eters as those of each meta-analysis. These additional 
analyses showed that the method was well suited to 
the problem at hand; performance was acceptable over-
all and for each classification type.

Toward more accurate assessments  
of cognitive-intervention research

These potential limitations notwithstanding, the current 
findings provide further insight into the heterogeneity 
across the cognitive-intervention literature and suggest 
that until additional research can provide a better 
understanding of the source of these discrepancies, 
caution is warranted. However, these discrepancies 
should not be taken as evidence that each of these four 
areas of research is invalid or that the findings are 
questionable. A multitude of factors could contribute 
to the distributional properties observed in cognitive-
intervention meta-analyses and more generally to the 
differences between this literature and other areas of 
research in psychology. For example, it could be argued 
that these interventions do not work for everyone and 
that their efficacy depends on individual traits and char-
acteristics, which in turn drive the observed patterns. 
This is improbable here, however, as it represents a 
poor account of the pattern observed at the group 
level—for latent individual traits to underlie the 
observed effects, they would need to be systematic, and 
in this case resources should be dedicated to identifying 
hidden moderators. Other factors that may prevent gen-
eralizability should also be acknowledged; these factors 
may include population characteristics, or specificities 
of intervention protocols or of their implementations. 
The onus is arguably on proponents of cognitive inter-
ventions to identify moderators, not on the rest of the 
scientific community to speculate as to what these mod-
erators might be.

Moreover, skepticism in the evaluation of cognitive-
intervention research may seem at odds with main-
stream findings in neuroscience praising the lifelong 
plasticity of the human brain. This apparent inconsis-
tency is not well grounded, however, for a number of 
reasons. First, it is surprising that simple interventions 
that largely mimic natural feedback can have such a 
profound impact on individuals’ abilities. If praising a 
growth mindset is all it takes to “unlock” children’s full 
potential, how can years of feedback from teachers and 
parents be superseded by a couple of online praise 
sessions? Although there might be explanations involv-
ing complex factors yet to be identified, plausible 
answers are still lacking. Second, if cognitive abilities 
are largely dynamic and volatile, one would expect 
improvements to be transient and abilities to quickly 
revert back to individual baseline after the intervention 
(Taya, Sun, Babiloni, Thakor, & Bezerianos, 2015). This 
is typically not the case in the literature primarily con-
sidered herein, yet the underlying processes that would 
allow sustained improvements have not been detailed 
at the mechanistic level. Finally, the adaptive nature of 
neural systems (Anacker et al., 2018; Moreno-Jiménez 
et al., 2019; but see also Sorrells et al., 2018) does not 
necessarily mean that changes can be observed at the 
behavioral level. Neural changes are largely irrelevant 
in this discussion—the fact that behavioral improve-
ments are plausible given current knowledge in neu-
roscience is not the question; even failed cognitive 
interventions can be related to neural changes (Román 
et al., 2016). Rather, the focus should be on whether 
meaningful behavioral improvements occur as a result 
of interventions.

Regardless of the current theoretical stance, one 
might assume that emphasizing malleability over fixed 
traits cannot be harmful, as it merely allows capitalizing 
on individual potential for change, with very little, if 
any, downside. It has been argued previously that this 
line of reasoning is questionable (Moreau et al., 2019)—
beyond individual harm, overstating the effect of the 
environment, and especially of short-term interventions 
on achievement, impedes evidence-based changes in 
policies. For interventions to have a profound, meaning-
ful impact, one needs to carefully consider the delicate 
balance between our natural willingness to have psy-
chological findings translate to real-world applications 
and the necessary caution when those implementations 
come at the expense of evidence-based policies.

Concluding Remarks

Given the appeal of large changes with little resources or 
investment, cognitive interventions have generated a great 
deal of excitement among individuals and institutions 
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seeking personal or collective growth. However, the large, 
unexplained heterogeneity in cognitive-intervention 
meta-analyses hinders individual predictions and prevents 
sound institutional policies. In a mixture-modeling analysis 
of 111 meta-analyses in the field of psychology, I showed 
that cognitive interventions, including brain-training, 
video-gaming, mindset, and stereotype-threat research 
all appear to feature multiple subpopulations of effect 
sizes. This pattern was not common in meta-analyses 
within the broader field of psychology, suggesting that 
cognitive-intervention research exhibits particular char-
acteristics that warrant further investigation. Although 
the specific nature of these characteristics remains 
undefined, the current findings further elucidate the 
specificities of cognitive interventions—a first step 
toward uncovering individual determinants of cognitive 
improvement.
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Notes

1. Or, perhaps more accurately, all of these measures are usu-
ally interpreted under the assumption that a single latent distri-
bution contributed to the overall distribution.
2. In practice, the estimation of means and mixing weights is 
combined with model comparison to ensure that the best char-
acterization possible is selected on the basis of the data at hand. 
This point is detailed further in the Method section.
3. Note that this heuristic is the reverse of typical Bayesian 
information criterion (BIC) calculations in most contexts (e.g., 

regression analyses). In such cases, the BIC should be mini-
mized; that is, a lower BIC indicates a better model.
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