
CHAPTER EIGHT

A precision-mapping approach
to physical exercise interventions
targeting cognitive function
David Moreau⁎ and Kristina Wiebels
School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
⁎Corresponding author: e-mail address: d.moreau@auckland.ac.nz

Abstract

Physical exercise confers numerous benefits to brain structure, function and cognition,
however, considerable individual variability exists in these effects. Emerging paradigms
focused on intraindividual dynamics provide novel opportunities to map and leverage
individualized neural architectures underlying exercise-cognition relationships. Progress
at the intersection of psychometrics, structural and functional neuroimaging, electro-
physiology, and genetics can be integrated to elucidate each individual’s potential
for improvement, as well as the specific abilities that are most likely to benefit from
exercise regimens. These personalized profiles can then guide targeted exercise
programs tailored to effectively modulate the pathways identified as most promising
for that individual. Such mapping-guided exercise interventions tailored to a person’s
neurocognitive profile allows optimizing cognitive improvements compared to results
elicited by generic regimens. While still in its infancy, precision interventions represent
an innovative future direction to advance exercise in support of brain health, toward
potent, truly personalized cognitive enhancement.
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1. Introduction

A growing body of research has demonstrated the diverse benefits

of physical exercise for both physical and mental health. Low fitness

levels have been linked to increased risks for a wide range of conditions

including stroke, cancer, diabetes, and cardiovascular diseases (Blair, 1995).

Furthermore, sedentary lifestyles correlate with higher incidence of several

neurological disorders, including autism, schizophrenia, attention deficit
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hyperactivity disorder (ADHD), dementia and Alzheimer’s disease, which

have all shown improvements through exercise interventions (Penedo

and Dahn, 2005).

Beyond mitigating neurological impairment, greater fitness has also

been associated with enhanced performance on tasks measuring executive

function, such as planning, reasoning, problem-solving and inhibition

(Colcombe and Kramer, 2003). Additional studies have shown these bene-

fits extend across a broad array of cognitive domains beyond executive

function (Moreau and Conway, 2013). Experimental research has further

demonstrated the causal nature of this relationship, with exercise interven-

tions eliciting cognitive improvements in both academic and professional

settings (Castelli et al., 2007; Coe et al., 2006; Keeley and Fox, 2009;

Moreau et al., 2017). These gains have also been documented in older

populations, with exercise linked to better cognitive performance, quality

of life (Cancela Carral and Ayán P�erez, 2007), mood and emotional stability

(Blumenthal et al., 1991). A growing body of evidence has demonstrated

that physical activity and fitness interventions can improve cognitive per-

formance across the lifespan (Hillman et al., 2008; Moreau and Conway,

2013; Smith et al., 2010) and across a range of modalities—for example, both

acute bouts of exercise and long-term training regimens have been associ-

ated with benefits to cognitive abilities including executive function,

memory, processing speed, attention and academic achievement (Chang

et al., 2012; Lambourne and Tomporowski, 2010; Moreau, 2022;

Moreau and Chou, 2019; Moreau et al., 2017; Tomporowski, 2003).

The mechanisms mediating the exercise-cognition connection are

now well-established. Exercise promotes neurogenesis and neuron survival

(van Praag et al., 1999; Vaynman et al., 2006), increased brain volume

(Colcombe et al., 2006), and enhanced brain vascularization (Black et al.,

1990). Hormonal and neurotransmitter activity in the brain is also altered

through physical activity (Mora et al., 2007)—one key mediator is brain-

derived neurotrophic factor (BDNF), which shows substantial increases

after exercise, most prominently in hippocampal regions (Neeper et al.,

1995) but also across cortical and subcortical structures (Neeper et al.,

1996). Elevated concentrations of BDNF can persist for weeks (Berchtold

et al., 2001) and are thought to enable the neural plasticity underlying

exercise-induced cognitive gains (Knaepen et al., 2010). Greater cardiore-

spiratory fitness has also been tied to increased white matter integrity in chil-

dren (Chaddock-Heyman et al., 2014; Krafft et al., 2014; Schaeffer et al.,

2014) and microstructural alterations in regions involved in cognition
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(Alexander et al., 2007). Exercise has also been associated with changes in

functional brain activity during cognitive tasks, measured via electroen-

cephalography (EEG) and functional magnetic resonance imaging (fMRI;

Chaddock-Heyman et al., 2013; Davis et al., 2011; Hillman et al., 2014;

Kamijo et al., 2011, Kao et al., 2023a,b).

Here, we discuss the potential for precision-mapping techniques to guide

targeted, individualized exercise interventions aimed at enhancing cogni-

tion. We first examine literature on maximizing exercise-induced cognitive

improvements, through manipulation of exercise intensity and modalities.

We then discuss sources of individual variability in the exercise-cognition

relationship, and emerging research using neuroimaging and electrophysiol-

ogy to map this heterogeneity. Building on these developments, we propose

that comprehensive multimodal mapping of an individual’s specific neural

architecture could inform tailored exercise regimens focused on the abilities

most likely to benefit for that person. After outlining an example framework

for precision mapping-guided exercise interventions, we consider limita-

tions of this approach, future research directions, and conclusions regarding

the promise of personalized exercise prescriptions for optimizing cognitive

gains. The overall focus of our review is on integrating insights across

diverse fields including exercise science, cognitive psychology, neuroim-

aging, electrophysiology, and precision medicine to put forth precision

mapping as an innovative strategy to advance individually optimized

exercise for enhancing cognition.

2. Maximizing exercise-induced improvements

While traditional moderate-intensity aerobic exercise is well-

established to enhance cognitive function (Hillman et al., 2008), emerging

research indicates that high-intensity interval training (HIIT) can provide

additional cognitive benefits beyond those gained from traditional regimens

(see Fig. 1). HIIT involves brief bursts of vigorous activity interspersed with

recovery periods. Though metabolically demanding, this form of exercise

requires less time commitment than moderate continuous exercise. Single

bouts of HIIT have been shown to acutely enhance executive functions,

including inhibitory control, working memory, and cognitive flexibility,

to a greater extent than moderate exercise (Alves et al., 2014; Tsukamoto

et al., 2016).

Several physiological mechanisms may underlie HIIT’s unique cognitive

advantages. HIIT elicits greater release of catecholamines and neurotrophins,
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such as brain-derived neurotrophic factor (BDNF) and vascular endothelial

growth factor (VEGF), relative to moderate exercise (Hu et al., 2022;

Khodadadi et al., 2023). These factors promote neuronal growth and

survival, stimulate neurogenesis, and increase cerebral blood flow, effects that

likely support cognitive improvements (Knaepen et al., 2010). HIIT also

rapidly increases expression of genes involved in mitochondrial biogenesis

throughout the body, enhancing overall metabolic function during cognition

(Cuddy et al., 2019), and is thought to enhance hippocampal memory and

neurogenesis (Okamoto et al., 2021).

Furthermore, HIIT’s intrinsic demand for rapid intermittent bursts of

effort and recovery makes it cognitively engaging (Moreau and Chou,

2019). The need for sustained attention, responsiveness to intrinsic physio-

logical cues, and intermittent push-pull workload requires cognitive control

and flexibility beyond moderate continuous exertion. This cognitive chal-

lenge likely contributes to the boosted cognitive gains from HIIT. Chronic

HIIT training may also induce superior structural neural changes compared

Fig. 1 Typical neurobiological, physiological, and behavioral outcomes of physical exer-
cise. Note: Shown characteristics include exercise intensity, modalities, and response,
which can be acute (short-term) or chronic (long-term). Neurobiological, physiological
and behavioral outcomes are shown either in terms of increases (blue arrows) or
decreases (orange arrows).
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to traditional aerobic training, which probably subserve enhanced cognition

(Ramos et al., 2015), though these largely remain speculative at this stage.

Through a host of physiological adaptations and intrinsic cognitive

engagement, HIIT provides a time-efficient exercise strategy to acutely

energize executive functions and chronically strengthen brain and cognition,

outperforming traditionalmoderate-intensity training. Integrating someHIIT

into aerobic training regimens may further amplify the well-established cog-

nitive gains from physical exercise (Mulser and Moreau, 2023); however,

more research is still needed on the mechanisms and optimal HIIT protocols

for cognitive enhancement.

Combining physical exercise with other methods of enhancement may

offer complementary benefits. Interventions pairing exercise with medita-

tion (Astin et al., 2003), cognitive training (Curlik and Shors, 2013;

Shatil, 2013; Wang et al., 2019a,b) or brain stimulation like tDCS (Ditye

et al., 2012; Madhavan and Shah, 2012; Martin et al., 2013; Moreau

et al., 2015a,b) have been found to have additive effects. Beyond traditional

regimens based on aerobic activity, recent trends in exercise physiology

research also suggest that HIIT may benefit cognition by inducing similar

physiological adaptations (Gayda et al., 2016; Milanovi�c et al., 2015) and

even greater gains in some domains (Rognmo et al., 2004). Similarly, resis-

tance training has also been shown to improve cognitive function despite

underlying mechanisms that differ from those of aerobic exercise (Best

et al., 2015; Liu-Ambrose et al., 2012). Finally, recent work has investigated

the potential for combining acute exercise and mindfulness training in a

single session, providing a proof-of-concept for the feasibility of this

approach (Kao et al., 2023a,b).

Following on from a large body of work on motor expertise that

has demonstrated the influential role of the motor system on cognition

(Moreau, 2013b, 2015; Wang et al., 2017; Wexler et al., 1998; Wraga

et al., 2003), an alternative approach is to incorporate cognitive challenges

within physical training (Moreau et al., 2015b). Dedicated sports practice

appears to confer unique benefits—for example, motor experts have been

shown to recruit motor processes during mental rotation tasks with abstract

shapes, while non-experts tend not to ( Jordan et al., 2001; Kosslyn et al.,

1998; Moreau, 2013a). This involvement of the motor system has been

observed across diverse tasks, from language (Beilock et al., 2008) to reason-

ing (Beilock and Goldin-Meadow, 2010; Cook et al., 2008), and aligns

with the motor simulation theory, which postulates shared neural substrates

( Jeannerod, 2001; Jeannerod and Decety, 1995). Overall, this line of
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research suggests that motor activities can effectively enhance a wide

array of cognitive abilities by solving perceptual, motor, and cognitive

problems while simultaneously sustaining physical activity (Moreau and

Conway, 2014).

3. The case for personalized interventions

The general benefits of exercise for the brain and cognition

are well-established, yet there remains considerable variability between

individuals in the nature and extent of these effects. In meta-analytic studies,

estimates of effect sizes for exercise-induced changes in cognitive perfor-

mance range extensively depending on factors such as the cognitive domain

assessed, participant characteristics, exercise regimens, and the cognitive

tests employed (Chang et al., 2012; Roig et al., 2013). Within a single

experiment, some individuals can show major enhancements following an

exercise intervention, while others exhibit little to no benefit in the same

cognitive measures. These heterogenous responses highlight the influence

of individual differences in determinants such as genetics, lifestyle, brain

structure and function, and baseline fitness levels on the cognitive effects

of exercise training (Barha et al., 2017).

Sources of this individual variability are beginning to be elucidated

through neuroimaging studies comparing how exercise impacts brain struc-

ture and function across people. For example, research employing functional

magnetic resonance imaging (fMRI) indicates that individual differences

in baseline brain activity patterns can predict the subsequent cognitive

improvements induced by an exercise intervention (Chaddock-Heyman

et al., 2018). Structural MRI studies demonstrate that the effects of aerobic

training on hippocampal volume vary significantly based on individual

variation in genes regulating neuroplasticity. Exercise-induced changes in

brain-derived neurotropic factor (BDNF), a key mediator of the cognitive

benefits, also differ across individuals based on genetic factors (Erickson

et al., 2012). Taken together, this research highlights the highly individual-

ized nature of the neural mechanisms through which exercise enhances

cognition.

Due to this heterogeneity, the “one-size-fits-all” approach to structured

exercise programs results in variable, limited cognitive improvements at the

group level and unpredictable benefits at the individual level (Moreau,

2018b). For example, classroom-based physical activity interventions dem-

onstrate overall small-to-moderate gains in academic performance, but often
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produce great heterogeneity—typically, some students will benefit but

others may not, or might even experience a decline in cognitive perfor-

mance (Watson et al., 2017). Similarly, modest and variable effects are found

from standardized exercise training in older adults (Kelly et al., 2014),

likely stemming from an inability of universal programs to address each

individual’s unique cognitive needs.

In this context, targeting exercise to an individual’s specific difficulties

presents a means to enhance and optimize cognitive benefits. Preliminary

support for this premise comes from studies showing that cognitive

improvements are greatest when physical activity focuses on abilities that

are suboptimal in a given individual. For example, children with low

inhibitory control at baseline exhibit the greatest gains in this domain from

interventions incorporating cognitively challenging exergames (Crova et al.,

2014), and inhibitory control appears to moderate the causal effect of

exercise on academic performance (Chou et al., 2023). Studies using

individualized training targeted to a participant’s heart rate variability, an

index of arousal regulation, have found enhanced cognition in older adults

(Albinet et al., 2016). While promising, this line of research still has tremen-

dous untapped potential; more precise and comprehensive data on individ-

ual profiles are needed to guide maximally effective tailored exercise

programming.

In parallel with these developments in the exercise literature, the fields of

medicine and healthcare have seen the rise of targeted, personalized inter-

ventions to health and disease, and the emergence of so-called precision

medicine. This approach uses detailed biological, environmental and life-

style data to optimize and tailor prevention and treatment to an individual’s

specific profile ( Jameson and Longo, 2015). Neuroscientists have recently

begun to adopt these concepts through “precision mapping” of brain struc-

ture and function. For example, Newbold et al. (2020) demonstrated rapid

disconnection of cortical regions associated with limb use from broader

motor networks after short-term limb immobilization, a finding that implies

regular activation may be necessary to maintain integration of distributed

brain systems. In this context, precision functional mapping could identify

any dysfunctional or underconnected neural circuits in an individual prior

to starting an exercise intervention. For example, frontoparietal executive

control networks frequently exhibit reduced connectivity in aging

(Gratton et al., 2019). Targeted aerobic exercise could be prescribed to

selectively reengage and reconnect those areas and associated cognitive pro-

cesses, as aerobic training has been repeatedly shown to enhance function in
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fronto-parietal networks (Colcombe et al., 2004). Newbold et al. (2020) also

observed large spontaneous “pulses” of activity in disused regions, possibly

aiding local connectivity. If such pulses occur during exercise, it could

further amplify reintegration of isolated networks. Analyzing the propaga-

tion of pulses through circuits could reveal optimal exercise doses and activ-

ities that enhance pulsatile drive to dysfunctional areas, and mapping before

and after exercise sessions could help track evolving changes in connectivity

of target networks, allowing adjustment of parameters to achieve complete

reintegration.

Further advances in brain mapping techniques, together with the

emergence of precision approaches in neuroscience (DiNicola et al.,

2020; Gilmore et al., 2021; Gordon et al., 2017; Gordon and Nelson,

2021; Laumann et al., 2017; Marek and Greene, 2021; Naselaris et al.,

2021; Poldrack, 2017) provide an avenue through which personalized exer-

cise interventions can be developed to optimize cognitive improvements.

Recent work has begun bridging the gap between neuroimaging-based

brain maps and personalized interventions. For example, Lynch et al.

(2023) have shown that functional connectivity mapping of individual

brain network organization can help identify target nodes for non-invasive

brain stimulation, effectively providing testable pathways for cognitive

interventions. Together with prior work that has identified core hubs of

executive control networks that can modulate associated cognitive processes

(Muldoon et al., 2016), recent developments suggest that individual neuro-

cognitive maps could prove useful in implementing personalized cognitive

interventions.

Specifically, multimodal imaging, electrophysiology, genetics, and

extensive cognitive testing can provide maps of an individual’s distinct

neural architecture and dynamics underlying cognition (Castellanos et al.,

2013). For example, these maps may detail how memory performance

relates to hippocampal structure (Mueller et al., 2010), frontal lobe activa-

tion (McDermott et al., 1999) and cholinergic gene variants (Erickson et al.,

2008; Nagel et al., 2008) within a single person. Once established, an

individual’s neurocognitive maps can potentially guide targeted interven-

tions to correct deficiencies and enhance abilities based on their specific

needs. Based on this idea, individualized maps have been used to tailor trans-

cranial magnetic brain stimulation to boost motor function in stroke patients

by targeting areas of needed increased excitability (Bashir et al., 2011).

Similarly, early pharmaceutical trials employed neuroimaging to generate

detailed maps of neurotransmitter deficiencies in order to guide targeted
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drug treatments (Gustavsson et al., 1997). While still an emerging approach,

precision mapping thus shows promise to inform targeted, individualized

interventions for cognitive enhancement.

4. Applying precisionmapping to exercise interventions

Personalized interventions have gained momentum in physiology and

exercise science. Optimizing training programs and performance through

individualized plans tailored to a person’s unique physiological makeup

has become commonplace—coaches and trainers regularly assess biomarkers

and trait characteristics such as VO2
max, muscle fiber typing, flexibility,

strength, and other metrics to design customized regimens for athletes

and clients. Based on the assumption that training focused on individual

needs, capacities, and biological predispositions is more effective than a

one-size-fits-all approach, this precision methodology has helped enhance

outcomes in physical training (Bird and Hawley, 2016; Kinnafick et al.,

2018; Mann et al., 2014).

Echoing this general trend in training and conditioning, application of

precision neurocognitive mapping techniques to exercise training could

significantly enhance the magnitude and optimization of cognitive improve-

ments compared to generic, standardized programs (Moreau, 2018a,b). In

recent years, advanced neuroimaging and electrophysiological techniques

have allowed extensive assessment of how physical exercise impacts brain

structure and function related to cognition. For example, structural MRI

studies have demonstrated exercise-induced growth in brain regions like

the hippocampus and prefrontal cortex that support cognitive processes

(Broadhouse et al., 2020; Erickson et al., 2011; Mahalakshmi et al.,

2020), while functional MRI has revealed that exercise leads to altered

neural activation during cognitive tasks, reflecting increased efficiency

and plasticity of brain networks (Voss et al., 2010). Similarly, electrophysi-

ological evidence indicates exercise improves the synchronization of slow

brain wave oscillations involved in attention and memory (Galinsky and

Frank, 2023; Wilckens et al., 2018).

These neuroplastic changes elicited by exercise occur in specific neural

circuits and networks supporting various cognitive faculties. For example,

hippocampal enlargement following aerobic training has been tied to

improved spatial memory (Erickson et al., 2011), while exercise-induced

increments inmiddle frontal gyrus activity are associated with better executive

function (Colcombe et al., 2004). Similarly, slow-wave synchronization
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between prefrontal and posterior cortical regions correlates with enhanced

attention after training (Sarnthein et al., 1998; Stephen et al., 2020).

Hence, mapping techniques can link localized and network-level brain

plasticity effects with exercise-induced cognitive improvements at the group

level. However, as discussed, there is considerable individual variability in

these effects. In this context, precision mapping is needed to elucidate

how exercise impacts the specific neural architecture underlying cognition

within a given person. Specifically, integrative precision mapping of an

individual’s neural structure and function—the collection and synthesis

of multimodal neuroimaging, electrophysiological, genetic and cognitive

data to delineate an individual’s unique neural patterns associated with cog-

nitive performance and plasticity (Gabrieli et al., 2015)—can be used to

guide targeted exercise training regimens for enhancing cognition.

Once individual profiles are established, they can inform specifically

tailored exercise prescriptions to improve cognitive function in a focused

way (see Fig. 2 for an example intervention protocol). For example, if an

individual’s profile reveals hippocampal connectivity and theta power

during memory tasks are predictors of performance, the mapping would

suggest exercise types known to enhance hippocampal plasticity and theta

synchronization should be prescribed, such as moderate-intensity aerobic

activity (Kandola et al., 2016) and coordinative exergames (Schmidt

et al., 2015). Likewise, mapping showing dorsolateral prefrontal function

predicts working memory could suggest benefits from HIIT, which is

thought to help upregulate dopamine signaling in those circuits (Alves

et al., 2014). In this way, mapping could provide a blueprint for selecting

personalized exercise types, intensities, and cognitive components to selec-

tively target cognitive processes needing enhancement.

Exercise types, intensities, durations, and cognitive engagement compo-

nents are then selected based on that specific individual’s neurocognitive

characteristics and needs. In addition, precision mapping administered

before and after an exercise intervention can help identify the distinct

neural circuits modified by physical activity in a given individual. Of note,

to remain precise mapping needs to be updated dynamically in response to

individual changes, and this approach can enable iterative refinements of

exercise regimens to maximize cognitive gains. For example, if assessments

indicate exercise increased prefrontal but not hippocampal activation asso-

ciated with improved executive function, the program could be adjusted to

better target mediotemporal plasticity. This is a promising approach through

which the general benefits of exercise to brain and cognition can be lever-

aged and optimized in an individualized manner.
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Fig. 2 Example design for a precision intervention. Note: The illustrated intervention includes a week-long baseline measurement period,
followed by an 8-week physical exercise regimen alternating between aerobic and high-intensity sessions, and a 4-week post-intervention
period. Measurements include structural fMRI, perfusion MRI, task fMRI, a cognitive battery, and continuous physiological monitoring.



5. Limitations of the precision-mapping approach

While promising, the proposed approach of using precision mapping

to guide individualized exercise interventions also has several limitations

requiring consideration. A primary challenge is integrating diverse struc-

tural, functional, and physiological data modalities into coherent profiles that

accurately characterize an individual’s exercise-cognition relationships

(Woo et al., 2017). Given the complexity of these relationships, current

neuroimaging and mapping techniques may lack sufficient resolution to

fully capture critical individual differences (Dubois and Adolphs, 2016).

For example, limitations in spatial resolution may occlude fine-grained

patterns of exercise-induced plasticity within brain structures that could

inform individually tailored interventions (Thomas et al., 2016). Temporal

resolution may be insufficient to capture subsecond neural dynamics relevant

to exercise-cognition effects. Expanding the imaging modalities applied could

help overcome these resolution barriers. The resource intensity of compre-

hensive mapping protocols is another barrier, as it typically requires extensive

participant testing with neuroimaging, genetics, and behavioral assessments

(Fisher et al., 2018).

Relatedly, the analytical complexity involved in linking mapping data

to tailored exercise prescriptions could also be prone to errors like overfitting

or failing to generalize (Yarkoni and Westfall, 2017), especially given that

the overall efficacy of mapping-guided interventions remains unknown

pending large-scale randomized controlled validation trials. This is in

addition to open questions regarding the ecological validity of lab-based

mapping approaches (Silberzahn et al., 2018) and potential tradeoffs—for

example, focused modulation of specific neural circuits could potentially

have unintended effects on other domains like personality or motivation

(Falk et al., 2013). Even if validated, implementing mapping protocols

and analysis in real-world settings presents feasibility issues that may limit

accessibility due to high costs and specialized equipment requirements

(Marek and Dosenbach, 2018), as well as ethical issues surrounding the

use of mapping data derived from assessments (Illes and Bird, 2006).

Consequently, underrepresented populations could face additional barriers

to accessing these promising but burdensome interventions, raising concerns

about equity (Falk et al., 2013).

Another potential limitation of the proposed precision-mapping

approach is reliance on standard psychological constructs and tests to assess
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cognition. Prevailing constructs like executive function and working

memory may represent “local optima” that do not fully capture the

breadth of human cognitive abilities (Moreau and Wiebels, 2021, 2022,

2023), due to researchers refining constructs based on their initial

operationalizations rather than exploring alternative ways to characterize

cognition. Consequently, the cognitive tests typically used to measure

exercise effects may not represent the best delineation of improvements

exercise can potentially impart. This limiting aspect raises concerns in and

of itself—precision mapping guided by standard constructs might miss alter-

native ways exercise could improve ecologically valid aspects of cognition.

For example, mapping exercise-related changes in executive function per se

may not fully capture other relevant improvements of cognitive abilities,

not because of limitations of the regimen but rather due to shortcomings

in our understanding of executive processes. To circumvent this limitation,

the proposed approach could be expanded to incorporate more diverse

operationalizations of cognition beyond established psychological tests.

This might involve developing novel tasks and environments that better

approximate real-world cognitive challenges. Mapping how exercise

changes performance on these innovative measures could reveal additional

cognitive benefits missed by reliance on prevailing constructs.

Furthermore, creatively exploring new ways to operationalize cognitive

function aligned with daily demands could not only help better characterize

the effects of exercise on mental function, but also help leverage exercise to

understand cognition (Moreau et al., 2023). Machine learning approaches

integrating brain mapping data, genetics, physiological data, and extensive

behavioral testing could help empirically derive cognitive frameworks opti-

mized to the specific improvements elicited by exercise (Vladisauskas et al.,

2022). This more open-ended, data-driven approach may supersede prev-

ailing constructs by better delineating the true scope of exercise-induced

cognitive benefits. In this context, moving beyond standard psychological

measures could be key for precision mapping to fully capture the breadth

of cognitive improvements exercise confers, as well as to better characterize

brain and mind.

6. Future directions

While promising, further research is needed to fully develop and

validate the utility of precision mapping to guide targeted exercise interven-

tions for cognitive enhancement. Key priorities will be expanding the
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mapping modalities employed and applying machine learning to increas-

ingly large datasets to create optimized models predicting individualized

exercise-cognition dose-responses. Additionally, implementation research

can help translate validated mapping-based exercise prescriptions from

controlled trials into real-world clinical and community settings.

Expanding mapping modalities will be an important step. Current struc-

tural and functional neuroimaging methods provide useful but incomplete

assessment of an individual’s potential responsiveness to exercise. The

integration of complementary modalities assessing additional aspects of

brain structure, brain function, physiology, and cognition would enable

more comprehensive precision exercise-cognition mapping (Wierenga

et al., 2014). Diffusion tensor imaging and spectroscopy methods can,

respectively, measure white matter microstructure and neurotransmitter

levels in mapped brain circuits modifiable by exercise, and thus provide

important information about the determinants and characteristics of cogni-

tive malleability (Maddock et al., 2016). Complementary techniques like

magnetoencephalography and direct brain stimulation provide higher

temporal resolution than fMRI to map rapid exercise effects on neural

oscillations and plasticity (Strube et al., 2016).

Genetic mapping, proteomics and metabolomics can help elucidate

molecular exercise-cognition mechanisms underlying mapped brain bio-

markers. Incorporating emerging wearable mobile brain imaging into

exercise training studies would facilitate cost-effective high-density tempo-

ral mapping of acute exercise-cognition dose responses. For instance,

portable EEG systems allow studying brain dynamics in naturalistic exercis-

ing conditions compared to restricted lab settings (Thompson et al., 2008).

Likewise, functional near-infrared spectroscopy (fNIRS) enables wearable

imaging of oxygenation changes during physical activity (Piper et al.,

2014). These tools could provide key insights into the neural processes

supporting natural motor learning and control enhanced through exercise.

Applying these multivariate approaches within individuals would enable

more precise elucidation of the diverse neural systems through which

physical activity enhances cognition.

Machine learning techniques leveraging big data will also be key to effec-

tive implementation. The aggregation of big datasets from large neuroimag-

ing consortiums and genetic biobanks is enabling advanced machine

learning techniques to derive individualized biomarker patterns predicting

medication responses and disease risk. Similar data science approaches can
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be applied to exercise-cognition mapping, using large, aggregated datasets

of multimodal brain imaging, genetics, blood biomarkers and cognitive

testing before and after exercise interventions. Deep learning algorithms

leveraging millions of mapped exercise-related biological parameters could

generate highly specified models predicting which precise neural pathways

modulated by exercise can enhance cognitive skills in a given individual.

Big data analytical techniques can help address the current limitations of

small sample sizes and single mapping modalities in exercise neuroscience

studies. High resolution predictive modeling can also facilitate more auto-

mated and cost-effective individualized mapping and exercise prescription

grounded in robust aggregated evidence. However, careful validation

using controlled trials will be critical to ensure accuracy and prevent over-

fitting as mapping-guided exercise interventions translate into clinical

practice.

Finally, once validated using multimodal big data modeling, further

research will be needed to effectively implement neurocognitive mapping

protocols to guide targeted exercise programming in real world settings

like schools, clinics and community programs. Pragmatic hybrid trials com-

paring cognition outcomes from mapping-based vs standardized exercise

regimens can determine the efficacy, costs, and feasibility of delivering

personalized interventions within existing institutional frameworks (Scott

et al., 2019). Implementation studies are necessary in this context to identify

optimal processes for efficiently collecting, analyzing, and communicating

precision mapping data to professionals prescribing tailored exercise in

diverse settings. User-centered design engaging all stakeholders such as

students, teachers, clinicians, and health system administrators can help tailor

protocols and generate effective strategies for uptake and sustained delivery

of mapping-guided exercise interventions.

For widescale public health implementation, research must also address

accessibility barriers to exercise mapping technologies and develop more

automated, lower-cost and demographically inclusive approaches. Studies

should determine best practices for effectively explaining and disseminat-

ing precision exercise prescriptions to improve adherence and cognitive

gains, especially in underserved communities bearing disproportionate

exercise-related health disparities. Focused implementation research will

be key to ensure neurocognitive mapping realizes its potential to make per-

sonalized, optimized exercise prescriptions to enhance cognition available

beyond just highly controlled research environments.

245Precision exercise interventions for cognition



7. Conclusion

Substantial evidence demonstrates that physical exercise improves

brain structure, function and cognition; however, considerable inter-

individual variability exists in these effects due to individual differences in

responses to exercise and in cognitive and neural architectures. By addressing

interindividual variability in exercise-cognition neuroplasticity, targeted

regimens can achieve more pronounced benefits. Recent advances in

neuroimaging, electrophysiology, exercise science and cognitive modeling

provide an opportunity to map neurocognitive phenotypes and their

responsiveness to exercise at an individualized level. Integrating structural

and functional brain mapping with cognitive assessments could help

identify personalized biomarkers linking exercise-induced neuroplasticity

to improvements in specific cognitive abilities for each individual. While

precisionmapping to inform tailored exercise training is still an emerging con-

cept requiring extensive further development, it represents an innovative

future direction with immense potential to advance the exercise-cognition

field toward true individualized enhancement of brain health and function.
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