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A B S T R A C T   

Although great progress has been made in our understanding of perceptual-cognitive expertise in team sports, the 
neurocognitive mechanisms underlying such cognitive advantage in the face of multiple, sometimes conflicting, 
channels of information are not well understood. Two electroencephalographic indices associated with 
perceptual decisions, the P3 component of event-related potential and alpha inter-trial phase coherence (ITPC), 
were measured and compared across elite soccer players and non-athletic controls while performing a redundant- 
target task. Specifically, we adopted an effective diagnostic tool, Systems Factorial Technology, to assess par
ticipants’ workload capacity. Soccer players exhibited larger workload capacity while making faster decisions 
compared with controls. Moreover, this larger workload capacity was associated with modulations of P3 and 
alpha ITPC when processing two targets relative to one target and one distractor, an effect that was not observed 
in controls. Together, the present findings offer a possible mechanistic explanation of perceptual-cognitive 
expertise in the context of team sports.   

1. Introduction 

The human brain is a rapidly adapting, dynamically changing system 
that allows learning from new experiences, inducing alterations in brain 
function and structure, a process called neuroplasticity (Dayan & Cohen, 
2011). Extensive evidence has demonstrated neuroplastic changes 
following motor training (Draganski et al., 2004; Moreau, Morrison, & 
Conway, 2015). As such, expertise in the motor domain (e.g., sport) has 
been proposed as a promising framework to understand training-related 
neuroplastic changes (Bezzola, Mérillat, Gaser, & Jäncke, 2011; Bianco, 
Berchicci, Perri, Quinzi, & Di Russo, 2017; Rosenkranz, Williamon, & 
Rothwell, 2007; Wang, Yang, Moreau, & Muggleton, 2017). In partic
ular, team or strategic sports such as soccer, which require processing 
and integration of multiple signals (e.g., ball, teammates, goal, and 
opponents) (Singer, 2000), can provide a valuable framework to un
derstand the cognitive and neural correlates associated with 
sport-induced neuroplasticity (Scharfen & Memmert, 2019; Ward & 
Williams, 2003; Yao et al., 2020). While there is increasing evidence 
demonstrating cognitive advantages in high-performing team sports 
players, little is known about how their neurocognitive systems process 

and integrate multiple signals for decision-making. 
Imagine that you are one of the players during a soccer game. The 

game environment may consist of a variety of information (e.g., the 
positions of the teammates and opponents) to drive you to make de
cisions (e.g., pass, dribble, or shoot). Upon detection of any signals for 
moving forward into attack, you must respond immediately by making 
an appropriate decision (e.g., pass or dribble). Certainly, a quick 
response is a vital factor for successful performance in sports. Surpris
ingly, although there has been a plethora of research demonstrating that 
athletes outperformed non-athletes on measures of attention and 
cognitive processing speed (Chaddock, Neider, Voss, Gaspar, & Kramer, 
2011; Hung, Spalding, Santa Maria, & Hatfield, 2004; Wang et al., 
2013), no conclusive evidence exits to support the processing speed 
advantage in team sports players (Alves et al., 2013; Memmert, Simons, 
& Grimme, 2009; Pesce, Tessitore, Casella, Pirritano, & Capranica, 
2007; Verburgh, Scherder, van Lange, & Oosterlaan, 2014; Voss, 
Kramer, Basak, Prakash, & Roberts, 2010; Wylie et al., 2018). It could be 
possible that the general speed of cognitive processing might not be 
sufficiently sensitive to probe the relevance of the specific cognitive 
profile of team sports, which could even paradoxically call into question 
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the ecological utility of laboratory measures of cognitive functioning in 
this type of sport (e.g., talent identification) (Beavan, Chin et al., 2020, 
Beavan, Spielmann et al., 2020). 

On the other hand, many team sports situations necessitate 
perceiving two or more signals simultaneously (e.g., perceiving the 
positions of teammates and the opponents while controlling the ball), 
resulting in increased workload on the processing system. As a conse
quence, players must operate in a high-workload environment that 
forces them to divide attention across multiple information sources, and 
sometimes are confronted with sources providing conflicting informa
tion. An ecologically valid example is that a dribbling player has to 
inhibit passing a ball when detecting a teammate on the offside position, 
despite other cues (e.g., hand gesture and voice) signaling to pass. One 
interesting question is how the increased workload affects a player’s 
efficiency in making decisions. Note that an increase in workload (i.e., 
the number of to-be-processed signals) may facilitate or impair perfor
mance, depending on the capacity of the processing system (Townsend 
& Eidels, 2011). Although there has been some studies showing that 
team sports players exhibited advantages in executive functions (Krenn, 
Finkenzeller, Würth, & Amesberger, 2018; Meng, Yao, Chang, & Chen, 
2019; Wylie et al., 2018), a type of high-order cognitive processes that 
are crucial for decision-making (Diamond, 2013; Friedman & Miyake, 
2017), it remains to be determined whether such cognitive superiority is 
associated with more efficient multi-signal information processing. 

To address this issue, we adopted a redundant-target task, which 
mimics the demands of a high-workload environment. The redundant- 
target task has been commonly used to evaluate an individual’s capac
ity of simultaneously monitoring multiple sources of information (Little, 
Eidels, Fifić, & Wang, 2018; Townsend & Eidels, 2011). In such tasks, 
the participants are required to make a positive response when one or 
more operationally-defined targets are present, and a target-absent 
response is made when no targets are detected. Here, we employed a 
color-shape redundant-target task (Chang & Yang, 2014; Yang et al., 
2019), where the test display consisted of two targets (redundant-target 
trial, C + S+), one target and one distractor (single-target trial, C + S- or 
C-S+), or two distractors (no-target trial, C-S-)1 . The typical finding in 
this paradigm is that mean reaction times (RTs) to redundant targets are 
found to be shorter than mean RTs to single targets, and this RT 
advantage with redundant targets is known as a redundancy gain (RG) 
or redundant-target effect (Miller, 1982). The RG may have occurred 
because of the statistical facilitation effect (Raab, 1962) or coactivation 
from parallel channels (Miller, 1982). As such, by comparing the RTs of 
the redundant-target trials to the single-target trials, we can investigate 
the variation of the processing efficiency as an increase in workload, 
known as the measure of workload capacity (Miller, 1982). With regard 
to its ecological pertinence, the assessment of workload capacity has 
been widely applied to explore the individual differences in information 
processing mechanisms, such as working memory capacity, cognitive 
aging, and personality traits (Ben-David, Eidels, & Donkin, 2014; Chang 
& Yang, 2014; Yang et al., 2019; Yu, Chang & Yang, 2014), demon
strating its utility in the investigation of individual differences in 
cogntive processing capacity. 

Although it is common to use mean RT analysis to draw conclusions 
about the individual differences in prior sport literature, we cannot 
make strong inferences about the processing differences based on this 
measure alone. For example, serial processing and parallel processing 
may mimic each other when solely considering mean RTs, which is 
known as the problem of model mimicry (Townsend & Wenger, 2004). 
Thus, we introduced the Systems Factorial Technology (SFT, Little, 
Altieri, Fifić, & Yang, 2017; Townsend & Nozawa, 1995) to the present 
study. SFT is a useful and diagnostic mathematical tool to study the 
properties of perceptual and cognitive mechanisms underlying 

decision-making, including the mental architecture (i.e., the order of 
multiple-signal processing), stopping rule (i.e., the amount of informa
tion required for devious decision-making) and workload capacity (i.e., 
the variation of processing efficiency as a function of workload). Here, 
we primarily focus on the workload capacity analysis to emulate the 
real-world situation where people need to handle multiple sources of 
information simultaneously. Taking advantage of workload capacity 
analysis via SFT, we can better understand how efficiency of information 
processing during decision-making may change as a function of work
load, and thus the possible perceptual and cognitive processing mech
anisms underlying individual differences (e.g., independent/interactive 
parallel/serial system). To elaborate, an unlimited-capacity system in
dicates that increasing workload does not affect the individual channel 
processing speed. On the other hand, a supercapacity or limited-capacity 
system indicates that increasing workload may speed up or slow down 
the individual channel processing speed. Although workload capacity 
and mental architecture are theoretically distinct constructs, it is tradi
tionally assumed that a certain type of architecture may possess a certain 
range of capacity. For example, a standard serial system is of limited 
capacity. A standard parallel system is of unlimited capacity. A coactive 
system is of supercapacity. Eidels, Houpt, Altieri, Pei, and Townsend 
(2011) further demonstrated that a parallel system possessing a certain 
level of interaction may result in different levels of capacity. That is, 
parallel processing with facilitatory inter-channel interaction would 
result in supercapacity processing whereas parallel processing with 
inhibitory inter-channel interaction would result in limited-capacity 
processing. 

The traditional workload capacity analysis of SFT framework can 
deal with multiple-signal processing in which both channels contain the 
targets, yet it cannot be applied to situations where multiple channels 
exhibit conflicting information. As a result, instead of the traditional 
workload capacity analysis, we adopted a novel capacity measure, so- 
called resilience capacity, which was recently developed by Little, 
Eidels, Fific, and Wang (2015). The resilience capacity is operationally 
defined as the comparison of the processing efficiency when redundant 
targets are present to the unlimited-capacity, independent, parallel 
model baseline (UCIP). The UCIP baseline is predicted from the two 
single-target conditions where a target is presented against a distractor. 
The resilience capacity is expressed as: 

R(t) =
Hc+,s+(t)

Hc+,s− (t) + Hc− ,s+(t)
(1)  

where HC+,S-(t), HC+,S-(t), and HC-,S+(t) denote the integrated hazard 
functions of the redundant-target conditions and two single-target 
conditions, respectively. When R (t) > 1, it indicates supercapacity 
processing; when R (t) = 1, it indicates unlimited-capacity processing; 
when R (t) < 1, it indicates limited-capacity processing. When process
ing is of unlimited capacity, it implies that the individual channel pro
cessing efficiency does not change even when an additional target or a 
distractor is added to the processing system. In other words, individual 
channel processing is resilient to additional channel processing. Super
capacity individuals can take advantage of the redundant-target signal 
processing to boost processing efficiency, via a facilitatory inter-channel 
interaction2 . By contrast, when processing is of limited capacity, 
redundancy may slow down the information processing speed, in the 
form of inhibitory inter-channel interaction. Therefore, we can utilize 
the resilience capacity analysis to make inference about how an 
informantion-proessing system deals with multiple sources that may 
provide conflicting information for decisions. 

1 Note that C stands for color, S stands for shape, + denotes target-present, 
and - denotes distractor-present. 

2 It is notable that supercapacity may have also occurred because distractor 
processing slows down the single-target processing, which results in an increase 
in the workload capacity. We will discuss about this possibility in the general 
discussion. 
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In order to investigate how the neural system may respond to vari
ations in the number of information sources during perceptual decisions, 
we measured the well-known electroencephalographic (EEG) and event- 
related potential (ERP) signatures of target detection process during 
perceptual decisions: alpha phase (Busch, Dubois, & VanRullen, 2009; 
Hanslmayr et al., 2005) and P3 (Nieuwenhuis, Aston-Jones, & Cohen, 
2005; Twomey, Murphy, Kelly, & O’connell, 2015). A large number of 
studies have used P3 to explore the perceptual-cognitive expertise in 
many different kinds of sports (Memmert, 2009). In terms of team 
sports, albeit limited, research has demonstrated differential modula
tions of P3 during perceptual decisions between elite athletes and their 
sub-elite or non-athletic counterparts (Iwadate, Mori, Ashizuka, 
Takayose, & Ozawa, 2005; Radlo, Janelle, Barba, & Frehlich, 2001). 
Despite limited evidence regarding oscillatory alpha phase in athletes, 
investigating of both indices can provide complementary information 
into the underlying neural mechanisms, given the functional similarity 
between P3 and alpha phase during target detection process (Yordanova 
& Kolev, 1998). For example, although ERP has the capacity to capture 
the temporal dynamic of the neuroelectric mechanisms underlying 
cognitive functioning, some considerable functional significance con
tained in the EEG frequency dynamics may be lose as a consequence of 
the time-domain averaging (Makeig, Debener, Onton, & Delorme, 
2004). Accordingly, investigating both EEG and ERP can provide deeper 
insight into the perceptual-cognitive expertise in sports (Nakata, Yoshie, 
Miura, & Kudo, 2010; Park, Fairweather, & Donaldson, 2015; Wang, 
Moreau, & Kao, 2019). 

The aim of this study was to investigate whether the perceptual- 
cognitive expertise in team sports is related to efficient process and 
integration of multiple sources of information. To the best of our 
knowledge, no prior study has used workload capacity measures to infer 
the dynamic process of perceptual decision-making in team sports 
players. We asked the following questions: if team sports expertise is 
related to individual difference in workload capacity, to what extent 
does it differ between elite athletes and a non-athletic cohort, and could 
potential differences be explained by the cognitively-induced neural 
modulations? The study was designed to provide important insight into 
the nature of information processing capacity associated with team 
sports expertise and its underlying mechanisms. 

2. Materials and methods 

2.1. Participants 

Sixty subjects, 30 male Division I collegiate soccer players (age: 
20.10 ± 0.92 years; education: 14.10 ± 0.92 years, professional training 
experience: 11.31 ± 2.09 years) and 30 physically active male non- 
player novices from general student population (age: 21.73 ± 1.43 
years; education: 15.30 ± 0.91 years) participated in the experiment. All 
of the soccer players were active team members of a collegiate soccer 
team and were engaged in a regular training program at the time of the 
study. Controls reported spending at least three times per week doing 
physical exercise but had no historical specialization in any sport. 
Notably, in order to avoid any influence of gender-sport interactions on 
cognitive function (Alves et al., 2013; Voss, Kramer, Basak, Prakash, & 
Roberts, 2010), we only recruited male participants. No individuals 
reported a history of neurological problems or cardiovascular diseases, 
nor were any taking medications known to affect cognitive function. 
Informed consent was obtained from all participants prior to the study, 
and approval was obtained from the Human Research Ethics Committee 
(HREC) of National Cheng Kung University. In accordance with guide
lines of the HREC, the data acquired in the present study cannot be 
shared with researcher without the written re-consent of the 
participants. 

2.2. Tasks and measures 

2.2.1. Redundant-target task 
This study adopted the same redundant-target task as prior studies in 

our group (Chang & Yang, 2014; Yang et al., 2019; Yu, Chang, & Yang, 
2014), and was programmed with E-prime 2.0 (Psychology Software 
Tools, Inc, Sharpsburg, PA). All soccer players were tested on days 
without training to prevent potential fatigue effects induced by physical 
training on task performance (Alves et al., 2013; Wang et al., 2017). In 
addition, experimenters ensured that all participants had not engaged in 
any specific activity prior to cognitive testing known to bias the effects of 
interest (e.g., exercising or drinking alcohol). 

In the redundant-target task, the test display consisted of a letter that 
was either an O or an X, either green or cyan, 1◦ (horizontal) × 1◦

(vertical) presented at the center of the screen. The target shape was 
defined as X and the target color was defined as green. The distractor 
shape was defined as O and the distractor color was defined as cyan. 
There were four types of test displays: both target features were pre
sented (i.e., redundant-target trial: a green X); a single target feature and 
a distracting feature were presented simultaneously (i.e., single-target 
trial: a green O or a cyan X); or neither target features were presented 
(i.e., no-target trials: a cyan O) (Fig. 1a). Each condition was equally 
distributed and was randomly intermixed within each block such that 
the participants would not be able to anticipate the presence of 
redundant-target trials. There were 20 practice trials and four blocks of 
100 formal test trials, yielding 400 formal test trials in total. 

All participants performed the task with concomitant EEG recording 
(see procedure below). The experiment was conducted in a dimly lit and 
soundproof room in and the participants sat in front of a screen at a 
viewing distance of 100 cm. All the visual stimuli were presented against 
a black background on a 21-inch cathode-ray tube (CRT) display. A trial 
began with a 1000 ms fixation cross (0.5◦ × 0.5◦). Afterwards, a central 
colored letter was presented until the participant made a response or 
2000 ms had elapsed. Then, a central fixation cross (0.5◦ × 0.5◦) 
appeared for a duration ranging from 1500 ms to 2000 ms, regarded as 
the inter-trial interval (ITI) (Fig. 1b). Participants were instructed to 
press the “/” key as quickly and accurately as possible when they 
detected one of the target features (either color green or shape X); 
otherwise, they were instructed to hold their responses when neither 
target features were detected. 

2.2.2. EEG acquisition 
The EEG recording procedure was performed in a manner similar to 

previous studies in our groups (Wang et al., 2017). EEG activity was 
recorded using a Nu-Amps EEG amplifier and the Scan 4.3 package 
(Neuroscan Inc., El Paso, TX, USA) with 32 electrodes mounted in an 
elastic cap (Quik-Cap; Compumedics, Neuroscan Inc.) designed for the 
International 10–20 System. The left and right mastoids were used as 
online references and a ground electrode was placed on the 
mid-forehead on the Quik-Cap. In addition, two sets of bipolar elec
trodes were placed on the upper and lower sides of the left eye, and on 
the canthi of both eyes in order to monitor vertical (VEOG) and hori
zontal (HEOG) eye-movements. Electrode impedances were kept below 
10kΩ. EEG data were acquired with an analogue–digital rate of 1000 Hz 
per channel, filtered with a Butterworth bandpass filter (0.1–70 Hz), a 
60-Hz notch filter, and written continuously onto a hard disk for sub
sequent offline analysis. 

2.3. Data reduction and statistical analyses 

2.3.1. Behavioral data 
E-prime 2.0 was used to record behavioral performance in terms of 

RTs (in milliseconds) and accuracy. RTs were excluded from analysis if 
they were from: (1) non-response trials, (2) error trials, and (3) correct 
trials with latencies more than two standard deviations above the mean. 

C.-H. Wang et al.                                                                                                                                                                                                                               
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2.3.2. SFT and workload capacity 
According to SFT, the capacity coefficient C (t) was computed to infer 

an individual’s workload capacity (Townsend & Eidels, 2011; Townsend 
& Nozawa, 1995). Notably, because in the present case the single-target 
trial consists of the distracting information, we used a modified capacity 
coefficient, i.e., resilience coefficient R(t), to estimate the workload 
capacity (Little et al., 2015; Yang et al., 2019). R(t) was computed ac
cording to the Eq. (1). The ranges of values of R(t) and their implications 
are as follows: (1) a value of R(t) > 1 suggests the system is of super
capacity: increasing the workload speeds up the processing speed for an 
individual channel; (2) a value of R(t) = 1 suggests the system is of 
unlimited capacity: the change in workload does not affect the pro
cessing efficiency of an individual channel; (3) a value of R(t) < 1 sug
gests the system is of limited capacity: increasing the workload slows 
down the processing speed for an individual channel. 

2.3.3. Functional principal component analysis of the resilience function 
We further employed functional principal components analysis 

(fPCA) with varimax rotation to decompose R(t) coefficient function into 
several principal components (Burns, Houpt, Townsend, & Endres, 
2013). fPCA is a structural extension of standard PCA (Ramsay & Sil
verman, 2005) and can be used to describe the entire functions using a 
small number of scalar values (i.e., the loading of the principal 
component) (Burns et al., 2013). This approach enables us to describe 
which part of the function-level property is crucial for distinguishing the 
effect of expertise on the workload capacity as a function of RT. In 
particular, it has been suggested that fPCA has the capacity to provide 
comprehensive information about the resilience function, particularly 
for the individual differences (Houpt & Little, 2017). Thus, we can 
conduct the statistical analysis of the resilience function via fPCA to 
discover the capacity differences in multi-signal information processing 
across soccer players and controls. 

2.3.4. Event-related potentials data processing 
Offline ocular-corrected EEG was first segmented into epochs 

ranging from -100 ms to 800 ms relative to target onset. The EEG data 
were then filtered with a digital band-pass of 0.1 and 30 Hz (12 dB/ 
octave) with FIR filter. The FIR filter was adopted because it can achieve 
linear phase response (Kiebel, Tallon-Baudry, & Friston, 2005). The 100 
ms pre-target period was used for baseline correction. Data with 
behavioral errors or artifacts with amplitudes ± 100μV in the HEOG 
channel and the other channels were discarded. The rest of the resulting 
artifact-free data was then averaged according to each condtion. We 
examined the P3 component from electrodes adjacent to midline areas 
(i.e., Fz, Cz, Pz) (Yordanova & Kolev, 1998; Yordanova, Kolev, & Polich, 
2001). On the basis of visual inspection of the grand average ERPs 
(Fig. 5), the mean amplitude and peak latency of P3 for each condition 
were determined for each participant. P3 was defined as the most 

positive deflection in a time window between 300 and 600 ms 
post-stimulus. The mean amplitudes for the P3 were defined as the mean 
areas during the time window of peak latency ± 25 ms. 

2.3.5. Time-frequency analysis of EEG 
The EEG analysis was performed using SPM8 for MEG/EEG (www.fil 

.ion.ucl.ac.uk/spm/) and custom Matlab (MathWorks) scripts (Hsu, 
Tseng, Liang, Cheng, & Juan, 2014; Wang, Liang, & Moreau, 2020). 
Only data collected from correct trials was analyzed. Prior to the 
time-frequency analysis, we identified large artifacts in the continuous 
EEG data and set the maximum level for eye-blinks. A correction for 
eye-blinks was applied to the EEG data, with eye-blink peaks being 
derived from VEOG by means of regression and correlation and these 
data used to perform eye movement correction for all electrodes. 
Continuous EEG data were locked to the target onset and were 
segmented into epochs from -1500 to 1500 ms relative to this time point. 
Trials containing artifacts with amplitudes exceeding ± 150 μV were 
discarded. Inter-trial phase coherence (or phase-locking index) esti
mates were computed by a continuous Morlet wavelet transform (Morlet 
wavelet factor = 6) of single-trial data for the frequency band ranging 
from 2 to 30 Hz (Roach & Mathalon, 2008). ITPC measures the temporal 
consistency of the phase value for a given frequency band at a certain 
time point. Phase coherence varies from 0 to 1, where 0 indicates 
absence of any EEG phase consistency across trials, and 1 indicates 
identical EEG phase consistency across trials (Delorme & Makeig, 2004). 
In line with the ERP analysis, the electrodes around midline regions (Fz, 
Cz, Pz) were clustered here for calculating the ITPC values (Yordanova & 
Kolev, 1998). We specifically focused on alpha activity (i.e., 9–13 Hz) 
due to the evidence that greater alpha phase resetting has been associ
ated with better perceptual decision making (Busch et al., 2009; 
Hanslmayr et al., 2005). The ITPC values for each time-point and fre
quency were used as the measures of interest for statistical analysis. 

2.3.6. Behavior-EEG correlations 
Correlations between behavioral and EEG data were examined to 

gain insight into the mechanisms that may underlie the individual dif
ferences in workload capacity across the two groups. Behavioral data 
included RG of mean RTs and fPCA components of R(t). ERP data con
sisted of the mean amplitudes and peak latencies of the P3 components 
acquired from difference waveforms for redundant-target and single- 
target trials across the electrodes of interest (Fz, Cz, Pz). For time- 
frequency of EEG data, we correlated all the bins contrasting 
redundant-target and single-target trials in the time-frequency repre
sentation with all of the behavioral indexes. 

2.3.7. Statistical analyses 
This study employed both frequentist (in SPSS 18.0) and Bayesian 

hypothesis testing (RRID: SCR_001905; R Core Team, 2018) for analyses 

Fig. 1. (a) Illustration of all possible test conditions. (b) Illustration of the experimental procedure of the redundant-target detection task.  
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of behavioral and ERP data. This framework allows quantifying evi
dence across a range of hypotheses, including the null. In line with 
previous studies in the field (Moreau, Kirk, & Waldie, 2017; Wang, 
Moreau, Yang, Tsai et al., 2019), all priors used in our analyses were the 
default scales (Morey & Rouder, 2015). Typically, a Bayes Factor (BF) 
greater than 3 is considered moderate evidence in favor of the hypoth
esis tested (i.e., the null or the alternative), whereas a BF between 1 and 
3 suggests the data are inconclusive (Dienes, 2014). All analyses were set 
to 104 iterations, with diagnostic checks for convergence. One chain per 
analysis was used for all analyses reported in the paper, with a thinning 
interval of 1 (i.e., no iteration was discarded). 

Bayesian independent samples t-tests with a Cauchy prior scale of 
0.707 and independent samples t-tests were used to examine the group 
differences in demographics, RG of mean RTs, and each fPCA compo
nent of R(t). A Bayesian Contingency Tables test and a Chi-Square test 
were used to test the difference in the number of individuals classified as 
supercapacity or non-supercapacity between groups. Bayesian mixed- 
design ANOVAs with default prior scales and mixed-design ANOVAs 
were conducted to analyze the accuracy performance, the mean RTs, the 
amplitudes, and the latencies of P3. For the time-frequency analysis of 
EEG, we used SPM8 for MEG/EEG (www.fil.ion.ucl.ac.uk/spm/) with 
custom Matlab scripts (Liang et al., 2014; Wang et al., 2017) to test the 
condition effect (redundant-target, single-target; paired t-tests) and group 
effect (soccer players, controls; independent t-tests), with a false dis
covery rate (FDR) correction (Benjamini & Yekutieli, 2001) for multiple 
comparisons. Finally, the Pearson correlation tests with FDR correction 
for multiple comparisons and Bayesian correlation tests with Jeffrey’s 
prior (Ly, Verhagen, & Wagenmakers, 2016) were used to assess the 
association between the EEG (P3 and alpha phase) and behavioral 
measurements of processing capacity [RG of mean RTs and fPCA com
ponents]. All tests for significance were set at alpha level 0.05. 

3. Results 

3.1. Participant demographics 

Demographic variables including height (soccer players: 173.47 ±
6.84 cm vs. controls: 172.93 ± 4.88 cm; BF10 = 0.276; t(58) = .35, p =
0.730), weight (soccer players: 66.80 ± 6.67 kg vs. controls: 64.37 ±
6.74 kg; BF10 = 0.599; t(58) = 1.41, p = 0.165), and body mass index 
(BMI) (soccer players: 22.20 ± 1.75 vs. controls: 21.50 ± 1.78; BF10 =

0.690; t(58) = 1.52, p = 0.133) did not meaningfully differ between 
soccer players and controls. 

3.2. Mean behavioral performance 

Table 1 shows accuracy and mean RTs of correct trials across groups 
and conditions. 

3.2.1. Accuracy 
The results showed very strong support for the main effect of 

condition [BF10 = 7.56e+29; Greenhouse-Geisser corrected: F(1.04, 
60.33) = 105.02, p < .001, ηp

2 = .64], with higher accuracy in the 
redundant-target condition (99.95 ± 0.22 %), intermediate accuracy in 
the single-target condition (99.33 ± 0.82 %), and lower accuracy for the 
no-target condition (92.73 ± 5.19 %) (all BF10 > 318.95 and p < .001). 
However, evidence for the main effect of group [BFInclusion = 0.20; F(2, 
116) = .89, p = .413] and group × condition interaction [BFInclusion =

0.18; F(2, 116) = .89, p = .413] was extremely weak. 

3.2.2. Mean RTs 
The results showed very strong support for the main effect of con

dition [BF10 = 3.49e+32; F(1, 28) = 5880.22, p < .001], with faster RTs 
for redundant-target condition than the single-target condition, consis
tent with prior research showing the RG (Miller, 1982). However, evi
dence for the main effect of group [BFInclusion = 0.55; F(1, 58) = .03, p =
.854] and group × condition interaction [BFInclusion = 0.38; F(1, 58) =
.03, p = .854] was extremely weak. 

3.2.3. Redundancy gain (RG) 
The t-tests revealed that there was no meaningful group difference in 

RG [BF10 = 0.26; t(58) = .11, p = .914]. 

3.3. Systems factorial technology and resilience 

Fig. 2 plots the resilience capacity coefficient function for each 
group. From the visual inspection, the results showed that, for most 
participants in the soccer players, R (t) was larger than 1 for the faster 
RTs, suggesting supercapacity processing. In contrast, for most partici
pants in the controls, R (t) was equal to or less than 1 for all times t and a 
few values of R (t) were hovering around 0.5, suggesting unlimited- 
capacity to (very) limited-capacity processing. To confirm our obser
vations, we conducted a non-parametric bootstrapping method to 
simulate 1000 samples for each condition and to construct the 95 % 
confidence interval for R (t) for each individual (Van Zandt, 2000). If the 
95 % confidence interval for R (t) exceeds 1 at some time t, we infer that 
the participant adopts supercapacity processing; otherwise, we infer that 
the participant adopts non-supercapacity processing (unlim
ited-capacity or limited-capacity processing). Please see Chang and Yang 
(2014) and Yu et al. (2014) for more details about the data analysis. 

Table 2 presents the classification results based on the non- 
parametric simulation. Results revealed that 14 out of 30 soccer 
players were categorized as supercapacity processing; in contrast, only 7 
out of 30 controls were categorized as supercapacity processing. The 
statistical analyses showed marginal evidence for a difference in the 
number of individuals classified as supercapacity and non-super ca
pacity across groups (BF10 = 1.712; x2(1) = 3.59, p = .058), indicating a 
trend showing that more soccer players exhibited supercapacity pro
cessing relative to the controls. 

3.4. fPCA of the resilience function 

We combined all the participants’ data to estimate the mean resil
ience capacity function (Fig. 3a) and the mean centered capacity func
tions for each individual (Fig. 3b), allowing for the investigation of 
overall trend and variability across groups. Fig. 4a, known as the screen 
plot, shows the amount of variance accounted for by each eigenfunction, 
and the results suggested a two-component solution. Fig. 4b shows the 
component with the mean function on the left and relative to the mean 
on the right. The first principal function accounts for 42 % of the vari
ance and indicates a general increase of the resilience function for the 
faster RTs. The second principal function explains 27 % of the variance 
and indicates that a change in the slope of the function, with a decrease 
in capacity for early times and an increase in capacity for the later re
sponses. The t-tests revealed a clear evidence for group-level difference 
in factor score for the first component (BF10 = 4.887; t (58) = 2.68, p =
.010), with higher factor score for the soccer players than for the 

Table 1 
Behavioral performance of the redundant-target detection task for soccer players 
and controls.  

Group 
Accuracy (%) Reaction time (msec) 

RT ST NT RT ST RG 

Soccer Players (n = 30) 99.93 99.33 93.97 428.60 484.82 56.22 
Controls (n = 30) 99.97 99.32 92.10 426.70 479.46 56.86 

Note: “RT”, “ST”, and “NT” represent the redundant-target, single-target, and 
no-target conditions, respectively. Redundancy gain (RG) is defined as the dif
ference in mean reaction times between the redundant-target and single-target 
conditions. Note that mean reaction time of the no-target condition was not 
shown because any response in this condition is incorrect for the Go/No-go 
version of the redundant-target detection task. 
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controls (Fig. 4c, d). However, no meaningful group difference in factor 
score was found for the second principal component (BF10 = 0.263; t 
(58) = -0.07, p = .947) (Fig. 4c and d). 

3.5. Event-related potential P3 component 

The ERP dynamics of the P3 component across conditions in each 
group can be found in Fig. 5a. 

3.5.1. P3 amplitude 
We found support for the main effect of electrode [BFInclusion =

5.08e+11; Greenhouse-Geisser corrected: F(1.62, 94.00) = 30.52, p < 
0.001, ηp

2 = .35], with smaller P3 amplitude at Fz (6.15 ± 3.19μV), 

intermediate P3 amplitude at Cz (7.26 ± 3.25 μV), and greater P3 
amplitude at Pz (7.92 ± 3.18 μV) (all BF10 > 4.6 and p < .003). Similarly, 
we found support for the main effect of condition [BFInclusion = 6.40e+12; 
F(1, 58) = 24.79, p < 0.001, ηp

2 = .30], with the P3 amplitude greater in 
the redundant-target condition (7.77 ± 3.01μV) than in the single-target 
condition (6.46 ± 3.44 μV). There was also strong evidence for the 
interaction condition × group [BFInclusion = 6440.37; F(1, 58) = 9.67, p =
0.003, ηp

2 = .14]. Decomposition of the interaction revealed support for 
the effect of condition for the soccer players (all BF10 > 3; p < .001) but 
not for controls (all BF10 < 1; p = .162) (Fig. 5b). We also tested addi
tional models, for which we found no meaningful support: one with 
group only [BF10 = 0.75; F(1, 58) = 2.00, p = 0.162], the electrode ×
group interaction [BFInclusion = 0.19; F(2, 116) = .51, p = 0.604], the 
condition × electrode interaction [BFInclusion = 0.15; Greenhouse-Geisser 
corrected: F(1.62, 94.79) = .2.98, p = 0.066], and the condition × elec
trode × group interaction [BFInclusion = 0.01; F(2, 116) = .36, p = 0.589]. 

3.5.2. P3 latency 
We found support for the main effect of electrode [BFInclusion = 68.79; 

Greenhouse-Geisser corrected: F(1.64, 95.29) = 17.56, p < 0.001, ηp
2 =

.23], with shorter P3 latency at Pz (421.98 ± 37.25 ms) than at Fz 
(436.17 ± 39.63 ms) and Cz (434.46 ± 40.40 ms) (both BF10 > 12.36 

Fig. 2. Plots of the capacity coefficient R(t) for the controls and soccer players in the redundant target task. R(t) was calculated from each individual’s empirical 
distribution of RTs. 

Table 2 
Contingencies for the capacity classification based on simulated data for each 
group.  

Group Supercapacity Non-super capacity 

Soccer players (n = 30) 14 16 
Controls (n = 30) 7 23  

Fig. 3. (a) The mean capacity function, averaged cross all participants. (b) The mean centered capacity functions for each individual and group. Red lines indicate 
the functions for soccer players and black lines indicate the functions for controls. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 
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and p < .001), while no difference was observed between the P3 latency 
at Fz and at Cz (BF10 = 0.21; p = .373). We also found weak evidence for 
the electrode × group interaction [BFInclusion = 0.65; F(2, 116) = 3.58, p =
0.031, ηp

2 = .06]. Decomposition of the interaction revealed that, for 
controls, P3 latency was shorter at Pz (415.75 ± 30.62 ms) than those at 
either Fz (436.58 ± 37.10 ms) or Cz (433.43 ± 37.91 ms) (all BF10 > 3 
and p < .001). In contrast, P3 latency was shorter at Pz (428.22 ± 42.49 
ms) than that at Fz (435.75 ± 42.65 ms) (BF10 > 3; p < .001) for soccer 
players, but only anecdotally shorter at Cz than at Fz (435.48 ± 43.36 
ms) (BF10 < 1; p = .054). Further, we found support for the main effect of 
condition [BF10 = 7.26e+10; F(1, 58) = 14.11, p < 0.001, ηp

2 = .20], with 
the P3 latency significantly shorter in the redundant-target condition 
(420.77 ± 40.98 ms) than that in single-target condition (440.97 ±
45.33 ms). There was also strong evidence for the condition × group 
interaction [BFInclusion = 6991.73; F(1, 58) = 7.20, p = 0.010, ηp

2 = .11]. 
Decomposition of the interaction revealed an effect of condition for the 

soccer players (all BF10 > 3; ps <.001) but not for controls (all BF10 < 1; p 
= .336) (Fig. 5c). We also tested additional models, for which we found 
no meaningful support: one with group only [BF10 = 6.73e-13; F(1, 58) =
.22, p = 0.639], as well as the electrode × condition interaction [BFInclusion 
= 0.65; Greenhouse-Geisser corrected: F(1.435, 83.21) = 1.41, p =
0.249] and the condition × electrode × group interaction [BFInclusion =

0.04; F(2, 116) = .72, p = 0.488]. 

3.6. EEG time-frequency analysis 

3.6.1. Alpha phase coherence over the midline fronto-parietal area 
As shown in Fig. 6, we investigated inter-trial EEG phase coherence 

during a perceptual decision-making task and found that both 
redundant-target and single-target conditions exhibited clear increases 
in theta (4–7 Hz) and alpha (9–13 Hz) activities after stimulus onset. The 
upper panels of Fig. 6 showed that soccer players exhibited greater 

Fig. 4. (a) A screen plot showing the amount of variance accounted for by each Eigen function, ordered from highest to lowest. (b) The first two principal com
ponents of the capacity function. The left column shows the component functions, weighted by the average magnitude of the factor score, compared to the mean. The 
right column shows the component function weighed by the average magnitude of the factor score. (c) Violin plots for the distribution of fPCA components together 
with the mean (box central dot), median (box central line), first and third quartile (box edges), minimum and maximum (whiskers), and each participants (dots). 
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phase consistency within the alpha band for redundant-target condition 
compared to that seen for single-target condition after target onset 
(100–500 ms, 9–12 Hz) (all qs < 0.05, FDR corrected). However, such an 
effect was not observed for the controls (all qs > 0.05, FDR corrected) 
(lower panels of Fig. 6). No between group differences were observed 
when comparing soccer players with controls across conditions (all qs >
0.05, FDR corrected). 

3.7. Behavior-EEG correlations 

3.7.1. RG of mean RT 
The results showed weak evidence for the correlations between RG of 

mean RT and RG on P3 amplitude (BF10 = 1.15; r = -0.23, p = .084), P3 
latency (BF10 = 0.83; r = .20, p = .131) and alpha ITPC (all qs > 0.05, 
FDR corrected) (Fig. 7a). 

3.7.2. The first principal function of fPCA 
Results showed evidence for the correlation between the first prin

cipal function and RG on P3 amplitude (BF10 = 2.27; r = -0.27, p =
.035), and P3 latency (BF10 = 3.01; r = .29, p = .024), while such an 
effect was weak for alpha ITPC (all qs > 0.05, FDR corrected) (Fig. 7b). 

3.7.3. The second principal function of fPCA 
The correlation analysis revealed that the second principal function 

was not correlated with RG on P3 amplitude (BF10 = 0.62; r = .17, p =

.199), P3 latency (BF10 = 0.35; r = .08, p = .529), and alpha ITPC (all qs 
> 0.05, FDR corrected) (Fig. 7c). 

4. Discussion 

Here, we report the first neurophysiological study combined with a 
novel and diagnostic mathematical tool (i.e., SFT) that investigated the 
cognitive and neural mechanisms underlying perceptual decision- 
making in team sports players. Our primary findings demonstrated 
that soccer players exhibited larger workload capacity than controls 
while making faster decisions despite no differences in mean measures 
(i.e., accuracy and mean RTs) being observed. Further, we observed 
clear RGs on ERP/EEG data selectively for the soccer players but not for 
the controls, together with RGs on P3 being positively related to work
load capacity over faster responses. To this end, these findings suggest 
that soccer players and controls differed in the way how they processed 
multiple sources of information with the presence of a distractor. 

The behavioral observation that soccer players’ overall mean RTs 
were comparable to that of controls is consistent with numerous previ
ous studies failing to observe superior processing speed in other team 
sports players (Alves et al., 2013; Pesce et al., 2007; Verburgh et al., 
2014; Wylie et al., 2018). Although there is research claiming that su
perior processing speed may be a contributing factor to 
perceptual-cognitive expertise in sports (Chaddock, Neider, Voss, Gas
par, & Kramer, 2011), this idea might not generalize to all athletic 

Fig. 5. (a) Grand averaged event-related potential waveforms across different conditions and electrodes for soccer players and controls. P3 amplitude (b) and P3 
latency (c) across redundant-target and single-target conditions for each group, split by condition, illustrating the group × condition interaction. The plots show the 
distribution (violin) of amplitudes and latencies for the P3 component together with the mean (box central dot), median (box central line), first and third quartile 
(box edges), minimum and maximum (whiskers), and each participants (dots). 

C.-H. Wang et al.                                                                                                                                                                                                                               



Biological Psychology 157 (2020) 107971

9

populations. For example, one meta-analysis study reported that ath
letes practicing team sports or static sports did not exhibit significant 
advantages over non-athletes on a variety of measures of attention and 
processing speed (Voss, Kramer, Basak, Prakash, & Roberts, 2010). One 
underlying reason might be that expertise is very narrow and does not 
translate to tasks beyond sport-specific contexts (i.e., near transfer) 
(Memmert et al., 2009). In addition, task difficulty might also account 
for the lack of mean performance differences, given that the accuracy 
rates for both groups were relatively high. Despite these limitations, 
there is increasing evidence that team sports players outperform 
non-athletes in tests of a subset of higher-order cognitive processes (e.g., 
executive functions) (Alves et al., 2013; Krenn et al., 2018; Vestberg, 
Gustafson, Maurex, Ingvar, & Petrovic, 2012; Wylie et al., 2018). 
Obviously, there is a lack of consistency in the literature on the rela
tionship between team sports expertise and cognitive advantages. 

Notably, most of the previous investigations have relied heavily on 
mean measures (e.g., mean RTs and accuracy) to make inferences 
regarding the cognitive advantages of athletes. However, some valuable 
information may be ignored in such measures. For example, although 
RG of mean RTs is typically considered a processing advantage because 
it suggests improved speed of responding, it lacks mechanistic expla
nation to interpret individual differences in processing capacity, such as 
the problem of model mimicry (Chang & Yang, 2014; Townsend & 
Wenger, 2004; Yang et al., 2019), and thus possibly leading to the fact 
that the cognitive advantages of athletes may have been under
estimated. Here we considered that workload capacity is a more sensi
tive measure to infer the underlying mechanism of the information 
processing system. 

The non-parametric capacity measure, R(t), was calculated by 
comparing the distribution of the RTs taken to make correct responses to 
displays with two targets versus one target and one distractor. The re
sults revealed marginal evidence showing more supercapacity in
dividuals in soccer players compared to controls at the fast responses. 
This finding was further confirmed by an fPCA analysis (Burns et al., 
2013), which identified important components characterizing capacity 
variation across time and participants. The first component, exhibiting 
an overall increase of the resilience function for the fast responses, 
separated soccer players and controls, providing support for the argu
ment that the two groups processed multiple-signal information 

differentially when making faster decisions. This effect, however, was 
not observed for the second component, suggesting that the later re
sponses only weakly accounted for the group variation. Together, these 
findings suggest that soccer players may deal with multiple sources of 
information in a more efficient way than controls, especially when 
making faster decisions. 

Although processing capacity is logically independent of other pro
cessing properties, we speculate that individual differences in processing 
architecture may help explain our SFT findings. This is because, 
empirically, certain architectures may possess a range of processing 
capacity (e.g., Townsend & Nozawa, 1995). For example, a coactive 
system is likely to be of supercapacity; a standard parallel system is of 
unlimited capacity; and a standard serial system is assumed to be of 
limited capacity. In the coactive system, activation from each channel is 
thought to be integrated into a single accumulator, resulting in a more 
efficient decision. As a result, the current findings may imply that soccer 
players tend to process multiple signals in a coactive fashion, whereas 
controls are more likely to process multiple signals via a parallel system 
with facilitatory interaction, or serially. That is, activation from the two 
channels may be processed simultaneously and compete for the decision 
independently; or, multiple signals are processed in sequence, one at a 
time, resulting in an inefficient decision. 

It should be noted that the degree to which the processing of dis
tracting information may affect the inferences about processing effi
ciency derived from the resilience capacity function (Little et al., 2015). 
That is, the assessment of the resilience capacity can be largely affected 
by the distractor processing because the resilience function is defined as 
the relative rates of processing of two targets to the processing of a target 
and a distractor. When the coactive model is applied, assuming that both 
target and distractor information are accumulated into a single accu
mulator (Little et al., 2015), the level of resilience capacity is dependent 
on whether the distractor can be processed efficiently or not. For 
example, if the distractor processing slows down the processing for the 
target, then the denominator in the Eq. (1) becomes smaller, which in 
turn results in a larger processing capacity. However, given similar 
performance of single-target processing across groups in the present 
case, the possibility that the soccer players were less efficient to process 
distracting information can be ruled out. Instead, our results suggest that 
they were more efficient at dealing with multiple signals and resolving 

Fig. 6. Time-frequency decomposition with Morlet wavelets in the fronto-parietal regions (Fz, Cz, Pz). The upper and lower panels illustrate the target-locked ITPC 
(stimulus presented at t = 0) in soccer players and controls, separately. Redundant-target condition is shown in the first panels, single-target condition is shown in the 
second, and the average differences between the two (masked at q < 0.05 FDR correction) are shown in the third and fourth panels, with the white-line enclosed 
regions and yellow shadows representing temporal clusters that reach the significance level when comparing redundant-target and single-target conditions (at q <
0.05 FDR correction). Averaged ITPC over 9 – 13 Hz was significantly greater during redundant-target condition relative to single-target condition in the soccer 
players (q < 0.05 FDR correction), whereas such an effect did not reach the significance level in the controls. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article). 
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conflicting sources of information pointing to different decisions. 
With regard to ERP findings, analyses of P3 component pointed out 

group differences in cognitively modulating neural activity. Here we 
observed that only the soccer players showed enhanced and earlier P3 
during the processing of two targets relative to the processing of one 
target and one distractor. Specifically, such RGs of P3 were found to be 
correlated with workload capacity over faster responses. P3 has been 
known to play a pivotal role in exploring the mechanisms underlying the 
translation from perception into action during decision making (Kok, 
2001; Nieuwenhuis et al., 2005; Twomey et al., 2015). Specifically, P3 
amplitude is thought to reflect the amount of attention paid to a given 
stimuli (Johnson, 1993; Kao et al., 2019; Wang, Shih, & Tsai, 2016), 
while its latency has been associated with the speed of 
stimulus-evaluation processes (Duncan-Johnson, 1981; Kutas, McCar
thy, & Donchin, 1977). Prior research has reported greater modulation 
of P3 along with more efficient responses when simultaneously pre
senting two targets relative to a single target during a visual discrimi
nation task (Akyürek & Schubö, 2013), which the authors interpreted as 
being related to the ease of consolidation of target signals in working 
memory, an argument in line with the context-updating hypothesis of P3 
(Donchin & Coles, 1988; Polich, 2007). Thus, the P3 modulations seen in 
soccer players may reflect a greater level of attentional resources 

engaged and accelerated neural responses when simultaneously pro
cessing two target signals, resulting in greater processing capacity. 

Information-processing models may help explain our findings. First, 
when applying the coactive model (Miller, 1982), the two targets in the 
redundant-target condition of our experiment may concurrently 
contribute to activation of the joint representation, which may result in 
the RG of P3 and greater workload capacity seen in the soccer players. In 
contrast, the weakness of RG on P3 in controls may suggest that the 
redundant information was not processed coactively, which could pre
sumably be explained by the race model (Mishler & Neider, 2017), in 
which target features race against each other for a decision. 

Our findings are also interesting in the context of dimensional-action 
model (Cohen & Feintuch, 2002). According to this model, when 
attention is focused on two target signals, the response decision from 
both signals are co-activated. Alternatively, when attention is focused on 
one of the target signals, only the response decision associated with the 
attended target is transferred to centers responsible for response 
execution. Thus, our findings possibly reflect differences processing 
strategy between soccer players and controls. To elaborate, soccer 
players were more likely to simultaneously attend to the two target 
signals, thus resulting in more information being processed. In contrast, 
controls might tend to focus on one of the target signals, and thus other 

Fig. 7. The behavior-EEG correlations in terms of (a) RG of mean RT, (b) the first principal function of fPCA, and (c) the second principal function of fPCA. The 
results revealed that only the first principal function of fPCA significantly correlated with redundancy gain on P3 amplitude (r = -0.27, p = .035) and P3 latency (r =
.29, p = .024). Other redundancy gains on behavior-EEG correlation did not reach the significance level. 
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signals do not contribute to further processing. 
Despite the absence of correlations between alpha ITPC and behav

ioral observations, the EEG finding provides supportive evidence for the 
ERP results due to the similarity of functional role of alpha phase and P3 
in task processing (Yordanova & Kolev, 1998). Results revealed that 
soccer players, but not controls, exhibited greater alpha ITPC on 
redundant-target trials relative to single-target trials. Alpha activity has 
been observed in a variety of attention tasks (Haegens, Händel, & Jen
sen, 2011; Klimesch, 2012), and its phase activity is thought to be a 
manifestation of controlled enhancement in target detection process 
(Busch et al., 2009). Yordanova and Kolev (1998) reported enhanced 
alpha phase synchronization when detecting targets relative to 
non-targets in an oddball paradigm, presumably reflecting a mechanism 
that stabilizes alpha brain states in response to task-relevant information 
processing. Further, Hanslmayr et al. (2005), using a visual discrimi
nation task, found that alpha phase synchronization was stronger for 
good performers, possibly reflecting better coordination in cortical 
activation processes. It seems conceivable that the higher alpha ITPC on 
redundant-target trials may be related to coactive processing of the 
target signals, and the differential modulation of alpha phase between 
soccer players and controls may suggest that they process redundant 
information in a different manner. If this is the case, we postulate that 
the additional processing of the redundant target may elicit more stable 
cortical responses in soccer players. In contrast, controls may be limited 
in processing multiple signals such that the summed-up processes may 
not induce noticeable changes in alpha activity. 

Finally, it is also worth mentioning that the absence of redundancy 
gain on neural processes in controls might be linked to baseline per
formance in the general population. Healthy adults typically display 
unlimited-capacity processing for color and shape features (Mordkoff & 
Yantis, 1991; Yu et al., 2014), and our data collected here suggest that 
team sports expertise may be related to cognitive advantage in pro
cessing multiple sources of information, possibly indicative of a ten
dency to adopt a global and flexible processing strategy to deal with 
real-world sporting environments. 

We should also point out a number of potential limitations to the 
present study. First, this study only investigated the processing capacity 
in a redundant-task detection task involving single modularity (i.e., two 
different visual features) within one location. However, research has 
demonstrated that processing capacity differ depending on task designs, 
with evidence showing that most individuals with superiorcapacity in 
processing information with different modalities (visual and auditory 
modality) and most individuals with limited-capacity in processing in
formation presented in different visual fields (Yu et al., 2014). Thus, 
future studies could also address this issue by using different types of 
redundant-target designs. Second, although we observed the mechanism 
of co-activation at a central, decisional level as evidenced by the mod
ulations of P3 and alpha ITPC, other loci of co-activation such as 
perceptual processes (Mordkoff & Yantis, 1991) or motor components 
(Giray & Ulrich, 1993) may also possibly contribute to greater pro
cessing capacity seen for team sports expertise—it would thus be 
interesting to explore whether the locus of enhanced processing capacity 
in team sports players differs depending on task characteristics. Third, 
this study did not control for some pre-existing differences that may 
potentially influence the variability in cognitive abilities, such as intel
ligence quotient (Fry & Hale, 2000), socioeconomic status (Hackman & 
Farah, 2009), personality (Hsieh, Yu, Chen, Yang, & Wang, 2020), or 
actual stress level (Hynynen, Uusitalo, Konttinen, & Rusko, 2008). 
Further investigations should aim to incorporate these factors to un
derstand their confounding associations with athletes’ information 
processing capacity. In addition, given that physical fitness has been 
associated with cognitive individual differences (Ludyga, Mücke, Col
ledge, Pühse, & Gerber, 2019; Wang, Moreau, Yang, Lin et al., 2019), 
our findings may possibly reflect this association. However, it is worth 
noting that recent research using meta-regression analysis has revealed 
that exercise dose parameters (e.g., frequency, session duration and 

intervention length) did not individually contribute to exercise-induced 
cognitive benefits (Ludyga, Gerber, Pühse, Looser, & Kamijo, 2020; 
Moreau & Chou, 2019), suggesting that long-term exercise training may 
improve cognitive performance even without noticeable changes in 
physical fitness (Wang, 2020). One may also argue that general physical 
activity might have impacted the results of interest (Kamijo & Takeda, 
2013; Kao et al., 2019). In order to alleviate this concern, we recruited 
physically active non-players as the control group. Unfortunately, we 
still could not deny the possibility that physical activity may account for 
some proportions of variance in the outcomes seen here. This is because 
this study did not precisely quantify the amount of physical activity level 
for each participant. However, one should be aware that it is difficult to 
objectively measure the physical activity level for some soccer-specific 
practices (e.g., motor, skill, tactical trainings, and small-side games), 
and, notably, the qualitative characteristics of sport training (e.g., 
cognitive skill and motor complexity) may also contribute to the 
observed cognitive enhancements (Ludyga, Gerber, Pühse, Looser, & 
Kamijo, 2020). Nevertheless, future research is needed to determine 
whether the perceptual decisions underlying team sports expertise 
might be mediated by the level of physical fitness or physical activity. 

Despite these limitations, taken together, this study provides some 
preliminary evidence for the utility of SFT combined with EEG in un
derstanding the cognitive and neural mechanisms underlying expert 
behavior in sports. In particular, the current findings suggest that the 
greater processing capacity seen in elite soccer players cannot be 
explained by mean performances, implying that the choice of measure 
could strongly influence the conclusions that are drawn. If this is the 
case, SFT may provide complementary evidence to solve some of the 
discrepancies in the literature. For example, although a recent meta- 
analysis study has demonstrated superior executive function in elite 
soccer players compared to their sub-elite and non-athletic peers 
(Scharfen & Memmert, 2019), such cognitive advantages did not emerge 
from those practicing other team sports (e.g., ice hockey, basketball) 
(Lundgren, Högman, Näslund, & Parling, 2016; Nakamoto & Mori, 
2008). Given that the conflicting evidence could be in part attributable 
to the inherent differences in the cognitive demand or processing 
strategy across different team sports, SFT may offer an alternative 
explanation regarding the specific cognitive profile of team sports. 
Moreover, with regard to the need for further development and vali
dation of cognitive measures that can be used to distinguish different 
levels of expertise and thus sports successes, future research is recom
mended to extend our findings by comparing soccer players with 
different levels of expertise. Finally, it is of interest to examine whether 
greater workload capacity in team sports players may be associated with 
higher level of attentional reserve under high cognitive workload. For 
example, despite the evidence that cognitive workload is negatively 
associated with attentional reserve (Jaquess et al., 2017), it remains to 
be determined whether individual difference in workload capacity may 
mediate such relationship. 

5. Conclusion 

This study provides an alternative mechanism of perceptual decision 
making in elite soccer players. While previous research has primarily 
explored processing speed advantage, in the current study we made use 
of the entire RT distribution and demonstrated greater processing ca
pacity in soccer players when making faster decisions. This was 
observed in conjunction with more flexible neural modulations in 
response to variations in the number of information sources, possibly 
reflecting the information-processing characteristics of team sports 
players during perceptual decisions. Despite the inherent limitations of 
our cross-sectional design, the present findings may provide the basis for 
understanding experience-dependent changes in perceptual decisions, 
possibly an essential pre-requisite for the development of team sports 
expertise. 
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