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ARTICLE INFO ABSTRACT

Being small for gestational age (SGA) has been established as a risk factor for Attention Deficit Hyperactivity
Disorder (ADHD). Likewise, several molecular genetic studies have found a link between DAT1 and ADHD. This
study investigated whether SGA moderates the effect of dopamine transporter gene variants on the risk of ADHD.
A total of 546 children of European descent were genotyped at age 11 for seven DATI SNPs (rs6347,
rs11564774, rs40184, rs1042098, rs2702, rs8179029 and rs3863145). The Strengths and Difficulties
Questionnaire was used to measure symptoms of ADHD at ages 3.5, 7 and 11. We found significant gene-
environment interactions between birth weight and DATI SNPs (rs6347, rs40184, rs1042098, rs3863145) on
ADHD symptoms at 3.5 years only. Results suggest that genotypic variation of DATI may confer a relative
protective effect against ADHD in SGA individuals. This study supports the idea that being born SGA moderates
the effect of the DAT1 gene on ADHD symptoms in the preschool years and may help to explain some of the
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heterogeneity in ADHD outcomes.

1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a heterogeneous
disorder both in terms clinical presentation and aetiology, arising from
complex interactions between genetic and environmental factors [1]. It
is typically characterised by a persistent pattern of inattention, hyper-
activity and impulsivity and has a prevalence of approximately 5% in
the school age population [2]. ADHD is most commonly diagnosed and
treated between the age of 7 and 12 [3], and is associated with poorer
academic performance and fewer friends during their schooling years
[4]. Later in life, ADHD is associated with antisocial behaviour [5], high
rates of criminality [6], low job performance [7] and substance abuse
[8].

The interaction between the prenatal environment and the foetal
genome is known to influence foetal growth [9]—for example, being
born with intra-uterine growth restriction (IUGR), typically defined as
the lowest 10th percentile of birth weight (small for gestational age,
SGA; [10] has shown a positive correlation with ADHD symptoms
(sADHD; [11]. Risk factors for SGA individuals range from maternal

malnutrition to low maternal pre-pregnancy weight, also including
factors such as hypertension, maternal smoking during pregnancy, and
placental dysfunction [12-15]. Reduction in cortical and white matter
in growth-restricted children [16] aligns with similar findings in ADHD
children [17]. Such brain volume atrophy has been shown to lead to
poorer developmental outcomes [18].

The role of the intra-uterine environment in the prediction of birth
weight is widely acknowledged in the literature. However, potential
genetic factors are yet to be fully understood. As individuals born SGA
are at an increased risk of developing ADHD [19], neurotransmitters
associated with ADHD may also be implicated in SGA Morgan et al.,
2012. Alterations in the dopamine system in particular are hypothe-
sised to be implicated in the link between SGA (a proxy for foetal ad-
versity) and ADHD [20]. The dopaminergic system is highly dependent
on a constant supply of various nutrients and oxygen, making it parti-
cularly vulnerable during adverse foetal conditions and postnatal en-
vironments such as maternal stress [21], malnutrition [22], environ-
mental toxins [23] and maternal separation [24]. SGA children have
been reported to show increased excretion of urinary dopamine
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compared with appropriate for gestational age (AGA) children [25].
Dopamine dysfunction is supported further by mouse models of [UGR
(via early protein restriction), indicating changes in dopamine dis-
tributions and behavioural abnormalities [26].

The dopamine transporter (DAT) is involved in the termination of
neurotransmission via the reuptake of dopamine from the synaptic cleft
[27]. Changes in the density of DAT at the synapse can directly influ-
ence the amount of dopamine actively available in neurotransmission
[28]. Imbalances in DAT density in ADHD individuals indicate the
possible involvement of genetic alterations in the dopamine transporter
gene (SLC6A3DATI; [29,82]). Sequence analysis of the 3'UTR of this
gene revealed a variable number of tandem repeat (VNTR) poly-
morphisms with a 40-bp unit repeat length, ranging from 3 to 11 re-
peats [30]. In humans, the 9R and 10R are most common [31]. DAT1,
specifically a 40-bp variable number tandem repeat (VNTR) in the
untranslated region (3'UTR), was the first gene to be examined in
ADHD candidate gene association studies [32], and some studies have
reported a significant association between the DAT1 VNTR and ADHD
(e.g., [33,34].

The 10R has been associated with reduced verbal inhibition [35]
and higher impulse errors [36]. It has also been suggested that these
polymorphisms may have a developmental stage-specific effect on
cognition and behaviour, with 10R associated with higher risk at
childhood and 9R at adulthood [37]. The 10R allele has also been found
to increase risk with specific haplotypes and environmental situations
[38], suggesting potential dopamine gene-environment interactions.
Other research suggests that DAT1 variants may be associated with
processes such as aversion delay rather than cognitive performance
[39]. However, due to the inconsistencies between studies, much re-
mains unknown about the complex mechanisms surrounding DATI
throughout development [40].

Although the analysis of DATI SNPs (single nucleotide poly-
morphisms) has been promising over the years with ADHD, the effect
sizes found remain small [41-43]. There have also been failures to re-
plicate these findings [44]. As such, there has been a shift in focus
within the literature to look at gene x environment interactions (GxE;
genotypic changes dependent on specific environmental exposures;
[45,46]. With regard to ADHD, a number of studies have reported GXE
interactions for the DAT1 40-bp VNTR located in the 3'UTR. The ma-
jority of these studies found that the 10R allele conferred increased risk
for ADHD when exposed to prenatal smoke [47,48], psychosocial ad-
versity [49], low parental expressed emotion [50], institutionalised
deprivation [51] and maltreatment in girls [52]. Despite this, little is
known on how exposure to a suboptimal environment could influence
susceptible dopamine variants.

Commonly, investigations into how environmental factors moderate
the effects of genes have focussed on increased vulnerability to en-
vironmental adversity in individuals with a certain genetic make-up.
Belsky and Pluess [53] proposed a theory that extends this classic
diathesis-stress model [53]. Their framework of ‘differential suscept-
ibility’ proposes that individuals may be more responsive to both
aversive and enriched environments [53,54]. Here, we test the hy-
pothesis that prenatal adversity (as namely, SGA) moderates the effects
of common DAT1 SNPs on the risk of increased symptoms of ADHD in
terms of the differential susceptibility framework.

2. Methods
2.1. Participants

This study was part of the Auckland Birth weight Collaborative
(ABC) study, which has been described in detail previously [15]. Par-
ticipants were singleton infants born full term (37 or more completed
weeks of gestation) in the Auckland and Waitamata District Health
Boards, between 16 October 1995 and 30 November 1997. Approxi-
mately half of the infants (N = 844) were SGA with birth weights equal
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to or below the sex-specific tenth percentile for gestation, and the re-
mainder (N = 870) were a random sample of infants born appropriate
for gestational age (AGA) [10]. Infants were excluded from the study if
they were not born in a designated study region, were from multiple
births or had congenital abnormalities likely to affect subsequent
growth or development. Gestational age was estimated using the date of
the last menstrual period, where it was available and was within two
weeks of the best clinical estimate of gestational age at birth; otherwise
the best clinical estimate was used.

Data were collected at five phases: birth, 1 year, 3.5 years, 7 years,
and 11 years. Extensive psychological, developmental, social and phy-
sical data have been collected on children and their families at all
phases. Due to the differential response rates amongst ethnic groups at
earlier phases, this study has been restricted to New Zealand European
mothers and their infants (N = 871 at birth).

The study received ethical approval from the Northern Regional
Ethics Committee. Signed consent to take part in each phase of the
study was obtained. Parents gave consent for the extraction of their
child’s DNA at age 11 years. Assent was provided by all children.

2.2. Symptoms of ADHD

sADHD were measured at ages 3.5, 7 and 11 years using hyper-
activity — inattention subscale of the parent format of the Strengths and
Difficulties Questionnaire (SDQ) [55]. Compared with other child be-
haviour rating scales, the SDQ is considered to be a brief measure of
child behaviour which inquires about 25 positive and negative emo-
tional and behavioural attributes. Each child is given a score on 5
subscales, each consisting of 5 items. The subscales relate to difficulties
in conduct, emotion, hyperactivity-inattention, peer group relation-
ships and pro-social behaviour. Each item is scored on a 3 point Likert
scale (0 = ‘not true’, 1 = ‘somewhat true’ and 2 = ‘certainly true’).
The total scores for each subscale were calculated by summing scores
on their respective items. The hyperactivity-inattention subscale con-
sisted of the following items: ‘restless, overactive, cannot stay still for
long’, ‘constantly fidgeting or squirming’, ‘easily distracted, con-
centration wanders’, ‘can stop and think things out before acting’ and
‘sees tasks through to the end, good attention span’ (score
range = 0-10). The SDQ has a test-retest stability of 0.62 after 4-6
months, and the internal consistencies of the subscales range from 0.62
to 0.75 [55].

2.3. Socio-economic status (SES) adversity

In order to control for differences in social background, we created
an index of socio-economic adversity. This included the following
measures: parental recent paid employment/income (based on the Elley
Irving Index; [56], maternal school leaving age, and maternal age at the
time of the child’s birth. These three variables were summed to create a
total index of SES adversity (with a range of 0-6). The total index of SES
adversity was used as a continuous covariate measure in all analyses.

2.4. Genotyping

At the 11 year assessment, a total of 546 participants consented to
collection of peripheral blood (n = 397) or a buccal swab (n = 149) for
DNA extraction and genotyping. Of these, 227 samples were from SGA
children and 319 were from appropriate for gestational age (AGA)
children. DNA was extracted from the blood/buccal samples using
Qiagen’s DNA extraction kit, following the manufacturer’s instructions.

Genotyping was performed with the MassARRAY and iPlex systems
of the Sequenom genotyping platform (Sequenom, San Diego, CA),
which uses the MALDI-TOF primer extension assay [57,58], according
to the manufacturers’ recommendations. Assays were optimised in 24
samples consisting of 20 reference Centre d’Etude du Polymorphisme
Humain (CEPH) samples and 4 blanks.
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All sample plates contained cases, controls, blanks, CEPH and du-
plicate samples. Quality control measures included independent double
genotyping, blind to sample identity and blind to the other caller, and
where available comparison of our CEPH genotypes to those in the
HapMap (www.hapmap.org).

SNPs examined in this study were identified using the National
Center for Biotechnology Information SNP database (http://www.ncbi.
nlm.nih.gov/snp). Departure from Hardy Weinberg Equilibrium (HWE)
was tested using a chi square goodness-of-fit test. There were no sig-
nificant HWE deviations in either the SGA or AGA groups.

A linkage disequilibrium (LD) test of the SNPs on DATI found that
151042098, rs11564774 and rs3863145 to be high in LD T > 0.80;
see Fig. 1). As such, the results of these SNPs should not be considered
independent of each other. Of those children with ADHD scores, 529
had genotype data for rs1042098, 502 had data for rs3863145 and 533
had data for rs11564774.

2.5. Statistical analyses

The interaction between SNP and birth weight on sADHD at ages
3.5, 7 and 11 years was examined using Analysis of Covariance
(ANCOVA) in SAS (version 9.3) and SPSS (version 22). SES adversity
index and sex were covariates in all analyses. The repeated option of the
proc mixed statement in SAS was used to examine all seven DAT1 SNPs
longitudinally (ages 3.5, 7 and 11). To investigate the findings further,
separate ANCOVA'’s were conducted for each phase (age 3.5, 7 and 11)
for each DATI SNP in SPSS. Post hoc comparisons were examined using
Bonferroni corrections to the alpha level.

An index of genotypic susceptibly was created, which combined the
effects of each of the four SNPs (rs1042098, rs40184, rs6347,
rs3863145) with significant interactions at age 3.5 years. Those with
the dominant genotype (major homozygous genotype + heterozygous
genotype) were given a score of 0 while those with the susceptibility
genotype (minor homozygous genotype) were given a score of 1. The
groups were collapsed into the following categories: (1) 0 susceptibility
genotype; (2) 1 susceptibility genotype; and (3) 2 or more susceptibility
genotypes. The majority of observations were for children with 0 sus-
ceptibility genotype (n = 292, 77%), followed by those with 1 sus-
ceptibility genotype (n = 57, 15%) and fewer children with 2 or more
susceptibility genotypes (n = 30, 8%) at age 3.5 years.
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Fig. 1. LD plot for 7 SNPs of the DATI gene. r* is used to indicate whether
SNPs are in LD and is shown in the region where the SNPs diagonally
intersect. High r* (** > 0.80) are provided in bright red boxes and in-
dicate SNPs that are in LD. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this ar-
ticle.)

rs8179029

3. Results

Of the 546 children who provided samples for DNA extraction at the
age 11 assessment, complete SDQ scores were available for 437 (80%)
children at the 3.5 year assessment, 490 (90%) at the 7 year assessment,
and 540 (99%) at the 11 year follow up assessment. Overall, 414 chil-
dren had complete sSADHD information at all phases of the study (3.5
years, 7 years and 11 years).

The repeated option of the proc mixed statement revealed sig-
nificant main effects of age for all seven DAT1 SNPs, showing that mean
ADHD scores decreased between the ages 3.5-11 years. A significant
main effect was found for rs40184 only, showing higher ADHD scores
for the G carriers (M = 3.21, SE = 0.01) than the minor homozygote A
carriers (M = 2.69, SE = 0.022, F( 373 = 4.55, p = 0.034). A sig-
nificant interaction between age and SGA status for rs40184 was found
(F1.90,710.14) = 5.45, p = 0.005) as well as a significant age by SGA
status by SNP interaction (F(;.90,710.14) = 4.11, p = 0.018).

Within the group analysis (SGA individuals only) showed that
ADHD scores for G allele carriers (M = 3.73, SE = 0.18) were higher in
comparison to A allele carriers (M = 2.60, SE = 0.41, F(; 158) = 6.49,
p = 0.012). Furthermore, between group (SGA vs. AGA) comparison
(simple effects tests on the significant 3-way interaction: see Fig. 2)
revealed that the those carrying AA genotype in the SGA group

ESGA
HAGA

sADHD

3.5 years

11 years

Fig. 2. Interaction between DATI rs40184 and birth weight status on SADHD at ages 3.5,
7 and 11 years. SGA = small for gestational age, AGA = appropriate for gestational age,
sADHD taken from hyperactivity subscale of SDQ. All analyses adjusted for gender and
SES. *p < 0.05.
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Table 1
Adjusted estimated marginal (EM) means and standard errors for the ANCOVA of DAT1
SNP and birth weight status interaction on sADHD at age 3.5.
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Table 2
Adjusted estimated marginal means and standard error (in parenthesis) for the ANCOVA
of DAT 1 SNP and birth weight status on SADHD at ages 7 and 11.

Group 1 Group 2 Interaction 7 years 11 years
SNP N EM Mean (SE) N EM Mean (SE) A/A + A/G G/G A/A + A/G G/G
A/A = A/G G/G 156347 SGA  3.32(0.18) 2.29 (0.53)  3.01 (0.15) 2.44 (0.49)
156347 SGA 154 3.63(0.17) 19 2.53(0.48) p = 0.024 AGA  3.11 (0.15) 3.25(0.53)  2.66 (0.13) 2.87 (0.45)
AGA 215 3.51(0.14) 16  4.10 (0.52) G/G = A/G  A/A G/G = A/G A/A
G/G = A/G A/A rs8179029 SGA  3.28 (0.17) 2.81 (0.73)  3.02 (0.15) 2.99 (0.68)
158179029 SGA 159 3.57 (0.17) 10 2.87 (0.66) p = 0.197 AGA  3.11 (0.15) 2.94(0.73)  2.69 (0.13) 2.93 (0.62)
AGA 215 3.56(0.14) 9 4.13 (0.70) G/G = A/G  A/A G/G = A/G A/A
G/G = A/G A/A rs40184 SGA  3.25(0.19) 3.00 (0.41)  2.93 (0.16) 3.13 (0.36)
1540184 SGA 141 3.68 (0.18) 28  2.50 (0.39) p = 0.020 AGA  3.19 (0.16) 291 (0.32) 2.78(0.14) 2.23 (0.28)
AGA 184 3.51(0.15) 45  3.62(0.31) T + C/T e T + ¢/T c/C
T/T + C/T c/C rs1042098 SGA  3.28 (0.17) 2.75(0.70)  3.02 (0.15) 2.93 (0.63)
151042098 SGA 166  3.52(0.17) 10 2.84 (0.67) p = 0.033 AGA  3.10(0.15) 3.94(0.62) 2.72(0.13) 3.17 (0.53)
AGA 229 3.50(0.14) 12 4.80 (0.61) G/G = G/C  C/C G/G + G/C  C/C
G/G = G/C C/C rs11564774  SGA  3.31 (0.17) 2.04 (0.87)  2.69 (0.13) 3.07 (0.54)
1511564774 SGA 170  3.53 (0.14) 7 2.73 (0.80) p = 0.056 AGA  3.10 (0.14) 3.79 (0.64)  3.04 (0.15) 2.58 (0.72)
AGA 22 .52 (0.1 12 X .
G 9 3520014 473 (0.64) Cc/C = C/T T/T Cc/C = C/T T/T
C/C = C/T T/T 1527072 SGA  3.20(0.17) 4.43 (0.95)  3.00 (0.15) 3.55 (0.87)
1527072 SGA 167  3.49 (0.16) 6 4.30 (0.85) p = 0.784 AGA  3.18 (0.14) 3.41 (1.16)  2.74 (0.13) 2.98 (0.89)
AGA 2 8 .1 .68 (1.
G 38  3.50 (0.14) 4 4.68 (1.04) c/C + C/T T c/C + C/T T
C/C = C/T T/T rs3863145 SGA  3.30(0.17) 2.50 (0.73)  3.00 (0.15) 3.03 (0.64)
153863145 SGA 160  3.56 (0.17) 10 2.83(0.66) p = 0.026 AGA  3.05(0.15) 3.63 (0.60)  2.65 (0.13) 2.93 (0.50)
AGA 212 3.47 (0.14) 13 4.76 (0.58)

ANCOVA model included Age, SES adversity index, a child’s sex, SGA/AGA status, SNP
and the interaction SGA/AGA status*SNP*age. SGA = small for gestational age,
AGA = appropriate for gestational age, EM Mean = estimated marginal mean,
SE = Standard Error, N = number of participants. All values adjusted for gender and SES
adversity. Group 1 (individuals with 1 or 2 susceptibility variant). Group 2 (individuals
with 0 susceptibility variants).

(M = 2.50, SE = 0.35) had significantly lower ADHD scores than those
in the AGA group (M = 3.50, SE = 0.28, F(1,66) = 4.89, p = 0.03) at
age 3.5 years.

ANCOVAs were conducted separately for each remaining DATI SNP
at each age. Presented in Table 1 are the descriptive statistics for the
interaction between DATI SNPs, SGA status and sADHD at age 3.5,
adjusted for sex and SES adversity. Analyses revealed a significant main
effect of SGA status for two of the SNPs at age 3.5 (rs1042098,
p = 0.033; rs3863145, p = 0.026) and approaching significance for
another two SNPs (rs40184, p = 0.08; rs6347, p = 0.051), with lower
ADHD scores associated with SGA and higher ADHD scores associated
with AGA.

There was also a significant SGA status by SNP interaction at age 3.5
years for the following SNPs: 151042098 (F(; 411) = 4.56, p = 0.033);
rs40184 (F(1’392) = 547, p= 002), rs6347 (F(l’ggg) = 516,
p = 0.024); and rs3863145 (F(; 389y = 4.979, p = 0.026). In the SGA
group, lower ADHD scores were observed for the following genotypes:
151042098, C/C  (Fq411) = 470, p = 0.031); 1540184, A/A
(Fasoz) = 5.12, p = 0.024); 156347, G/G (F(1 308 = 4.91, p = 0.027);
and rs3863145, T/T (F( 380 = 4.82, p = 0.029). For the AGA group,
higher ADHD scores were associated with these genotypes at age 3.5.

Simple effects tests also revealed that, within the SGA group, the
minor homozygote for rs40184 (A/A) and rs6347 (G/G) had lower
ADHD scores than the SGA heterozygotes (F(; 392) = 7.56, p = 0.006
and F(; 308y = 4.66, p = 0.031 respectively). Within the AGA group,
the minor homozygote for rs1042098 (C/C) and rs3863145 (T/T) had
higher ADHD scores than the AGA major heterozygotes and homo-
zygotes (F(1J411) = 4.36, p= 0.037 and F(1,389) = 4.69, p= 0.031 re-
spectively). No significant interactions were found at ages 7 or 11 years
(means presented in Table 2, adjusted for sex and SES adversity).

The interaction between the genotypic susceptibility index and SGA
status was examined in three ANCOVAs (one for each phase — 3.5, 7 and
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ANCOVA model included Age, SES adversity index, a child’s sex, SGA/AGA status, SNP
and the interaction SGA/AGA status*SNP. p values shown for SGA/AGA status and SNP
interaction. SGA = small for gestational age, AGA = appropriate for gestational age,
N = number of participants, SADHD measured from hyperactivity subscale of SDQ. All
values adjusted for gender and SES adversity.

11). The analyses revealed a significant effect of SGA at age 3.5
(Fa 371y = 6.78, p = 0.01), showing lower ADHD scores in those born
SGA (M = 2.98, SE = 0.23) compared to AGA (M = 3.82, SE = 0.22).

There was also a significant interaction between birth weight and
genotypic susceptibility at age 3.5 years (F3371) = 5.41, p = 0.005).
The results and adjusted means for this analysis are shown in Table 3
and Fig. 3. Simple effects tests revealed that individuals who have two
or more susceptibility variants have significantly higher sADHD if they

Table 3

Adjusted estimated marginal means and standard error (in parenthesis) for separate
ANCOVA analyses at ages 3.5, 7 and 11 years for the interaction of genotypic index and
birth weight status on SADHD.

SGA AGA
Age Genotypic N EM Mean N EM Mean Interaction
index (SE) (SE)
3.5 years
0 127 3.73(0.18) 165 3.44(0.16) p = 0.005
1 22 2.77 (0.44) 35 3.53 (0.35)
2+ 16 2.45(0.51) 14  4.51 (0.55)
7 years
0 141 3.36(0.20) 187 3.05(0.17) p = 0.418
1 28 3.15(0.44) 38 3.04(0.38)
2+ 16  2.62(0.58) 17  3.42(0.56)
11 years
0 160 2.99(0.17) 202 2.78(0.15) p =0.313
1 29 298(0.40) 45 2.03(0.32)
2+ 16 2.85(0.53) 19  3.05(0.49)

ANCOVA model included; SES adversity index, a child’s sex, SGA/AGA status, genotypic
index and the interaction SGA/AGA status*genotypic index. SGA = small for gestational
age, AGA = appropriate for gestational age, N = number of participants, EM
Mean = estimated marginal mean, SE = standard error, sSADHD = symptoms of atten-
tion deficit disorder measured from the hyperactivity subscale of SDQ. All values adjusted
for gender and SES adversity.
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6 7 Fig. 3. The interaction between DATI genotypic index and SGA/AGA
status on sSADHD at ages 3.5, 7 and 11 years. SGA = small for gestational
* AGA age, AGA = appropriate for gestational age, genotype = number of gen-
5 1 T sA otypes from the genotypic index, SADHD = symptoms of attention deficit
disorder measured from the hyperactivity subscale of SDQ.
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are also born AGA (M = 4.51, SE = 0.55) than if they are born SGA
(M = 2.45, SE = 0.51, F(3 371y = 7.53, p = 0.006).

The interaction between SGA and genotypic susceptibility ap-
proached significance, whereby SGA individuals with no susceptibility
alleles had higher ADHD scores (M = 3.73, SE = 0.18) compared to
SGA individuals with two or more susceptibility alleles (M = 2.45,
SE = 0.51, p = 0.058). For individuals with no susceptibility alleles, no
significant difference was found between SGA and AGA groups. These
findings indicate that as the number of susceptibility alleles an in-
dividual increases, SADHD decrease if they were born SGA and increase
if they were born AGA.

4. Discussion

A suboptimal prenatal environment has been linked to the onset of
ADHD symptoms in childhood [59]. Because previous research suggests
dopamine dysfunction is implicated in several developmental disorders,
including ADHD [26], we tested the idea that the association between
particular SNPs in DATI and ADHD might be moderated by birth
weight. Specifically, the present study investigated whether being born
SGA moderates the association between SNPs in DATI and sADHD in
early and middle childhood from a longitudinal cohort.

Nominally significant gene-environment interactions were found for
four of the seven investigated SNPs at age 3.5 years: SNPs rs1042098;
rs40184; rs6347; and rs3863145. The pattern of results was somewhat
unexpected. There was no difference in ADHD scores between AGA and
SGA groups who were heterozygotes and homozygotes for the major
ADHD-risk alleles. Individuals who had the homozygote minor alleles
of rs1042098 (C/C), rs40814 (A/A), rs6347 (G/G) and rs3863145 (T/T)
showed lower ADHD scores within the group born SGA. Significant
differences in ADHD scores within the SGA group (rs40184 and rs6347)
and AGA group (rs1042098 and rs3863145) provides further support to
the notion that differences in ADHD scores occur for different genotypes
in light of prenatal adversity. Within the SGA group, ADHD scores were
lower for the minor alleles (low-ADHD risk) compared to the hetero-
zygotes and homozygotes for the major alleles. This contrasts with the
AGA group where ADHD scores were higher for these same minor al-
leles. As such, the major “susceptibility” DAT1 alleles were consistent in
SGA but not in AGA children.

In the current study, two SNPs were located in exons 9 and 15
(rs6347 and rs11564774), two in introns 9 and 14 (rs8179029,
rs40814) and three were located in the 3’"UTR (rs1042098, rs27072,
rs3863145; [41,42,60]. Greenwood and Kelsoe [61] suggest that in-
trons 9, 12 and 14 all influence DATI expression, increasing genetic
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expression up to 2 times. This indicates that specific combinations of
polymorphisms across the gene may lead to variations in DAT1 ex-
pression [61]. Johnson et al. [62,63] have reported that the rs6347 SNP
located in exon 9 may have a functional role in allelic mRNA expression
imbalance [22,62,63,81]. Furthermore, Greenwood et al. [80] identi-
fied the A allele of DATI SNP rs2702 to be in linkage disequilibrium
with the 6R allele of the 40 bp VNTR in the 3'UTR, associated with the
reduced functional activity of the DAT gene. Conversely, Pinsonneult
et al. (2011) found that DATI variant rs6347 influenced the DAT ex-
pression but not the 40 bp VNTR located in the 3’UTR.

Of the SNPs used in the current analysis, four have been associated
with ADHD symptoms: rs40184 (G-allele); rs27072 (G-allele);
rs1042098 (A-allele); and rs6347 (A-allele) [64,41,42,60,36,65,66].
However, there have also been failures to replicate these findings
[67-69]. This leads to the conclusion that the overall effects of this gene
are small (OR = 1.26; [41,42] and highly variable across populations
[60,36].

So why was our effects observed only at the age 3.5 assessment?
Wagner et al. [70] suggests that prenatal factors do not have lasting
effects on behavioural outcomes later in life. Genetic overlap with other
psychiatric disorders and/or age dependent epigenetic modifications
could help to explain why no significant interactions were found for
children aged 7 and 11 in the current study.

Overall, DNA methylation indicates one possible mechanism of how
environmental influences can impact genetic expression over time.
Interestingly, DNA methylation has been linked with ADHD symptoms
in childhood [71,72]. Low DNA methylation levels at birth have been
associated with increased ADHD scores in 6 year old children [71].
Furthermore, differences in DNA methylation in genetically identical
twins and between assessments at age 5 and 10 provide evidence about
how genetic expression can differ within individuals due to environ-
mental influences over time [72]. These findings indicate that gene
expression is not always fixed throughout childhood and how en-
vironmental influences may play a role in this change.

Our novel finding of a potentially protective effect of certain DAT1
genotypes in light of a prenatal suboptimal environment does not
support our original prediction that children born SGA with certain
DATI genotypes would show an increase in SADHD in childhood. The
moderating effect of SGA on the DAT1 genotype does, however, support
the hypothesis that environmental factors affecting intrauterine growth
(IGUR) also influence the central dopaminergic system. As such, certain
DATI polymorphisms in SGA individuals, may buffer the effects of
prenatal adversity on dopaminergic signalling. That is, DAT] may
hinder a developmental trajectory that would have otherwise manifest
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as ADHD.

In contrast with our findings, birth weight has been found to
moderate the association between angiogenic and neurotrophic SNPs
on ADHD [73,74]. Dopaminergic SNPs, however, were not moderated
by a suboptimal prenatal environment. Risk from angiogenic and neu-
rotrophic genes were found for the minor alleles, suggesting that rare
polymorphisms of these genes play an important part in ADHD devel-
opment. Smith [73] suggests that the risk of later ADHD symptoms for
those born with restricted foetal growth could be due to prenatal
ischemia/hypoxia. Further research should be conducted to investigate
the extent to which exposure to a suboptimal prenatal environment
moderates the interaction between genetic factors and ADHD.

Further research into different combinations of DATI polymorph-
isms and their impact on the expression of the DAT protein could reveal
variants that are resilient and susceptible to exposure in a suboptimal
prenatal environment. These different genotypic interactions may
provide a link to the variations in phenotypic expressions observed in
ADHD individuals [40]. However, replications with larger sample sizes
are required to further understand these interactions.

As noted earlier, genetic overlap with other health disorders and
ADHD (e.g., [75] could modify the influence of DAT1 variants on later
ADHD symptoms. For example, a study by Zhou et al. [66] found a
significant effect of the SNPs rs40184 (A/G) and rs2652511 (A/G) in a
group of ADHD children only when comorbidity with conduct disorder
(CD) was not present. Further haplotype analysis of the two SNPs re-
vealed an over transmission of the G/G haplotype, with the A/A hap-
lotype indicative of a moderately protective effect. The finding of a
protective effect of the A/A genotype aligns with findings from the
present study for the SGA group.

Comorbidities with other psychiatric health disorders were not in-
vestigated in the present study (mostly due to the relatively small
sample size precluding diagnosis such as bipolar or schizophrenia);
therefore, differences in genotypic susceptibility cannot be ruled out.
Moreover, cormorbidity with psychiatric health problems such as bi-
polar and depression is low at 3.5 years of age. However, the potential
genetic overlap of conduct disorder, depression and bipolar with ADHD
has the potential to influence DAT1 SNPs (particularly rs40184 and
1s27072) on ADHD scores for children in the present study.

In addition, differential susceptibility to prenatal glucocorticoid
exposure potentially leads to variations in male and female develop-
mental trajectories. This finding could help explain how males and fe-
males respond to later environmental adversities and provide a me-
chanism for the differences observed in functional impairment and
comorbidity. Though sex was controlled for in the present study,
sample size limitations restricted separate analyses by sex.

HPA dysregulation is thought to be associated with ADHD in-
dividuals [76] and those with low birth weights [77]. However, the link
between early foetal adversity, the programming of the HPA axis and
later symptoms of ADHD is still to be determined. Furthermore, mouse
models of malnutrition via IUGR (a proxy for SGA) have not only
identified links with behavioural abnormalities and dopamine dys-
function but a potential gene affecting both IGUR and dopamine neuron
development [26]. Vucetic et al. [26] identified an imprinting gene
Cdknlc (highly susceptible to dysregulation in adverse environments)
that was hypomethelated and overexpressed in the mouse model. This
identifies another potential link between SGA, dopamine function and
sADHD.

A further aim of the current study was to test whether the results
aligned with the differential susceptibility framework [53,54]. Most
studies focus on the negative “risk” genes in adverse environments (e.g.
prenatal adversities, parental rearing and maltreatment). This leaves a
large gap in the literature on the positive effects of this risk gene (or
susceptibility gene) when in nurturing environments [78,54]. As an
extension of the classic diathesis stress model, the differential suscept-
ibility framework defines certain genotypes as more responsive to en-
vironmental influences. In the present analysis, the interaction between
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prenatal environmental factors and certain DATI variants did not fully
support the framework of differential susceptibility. In addition, our
results suggested a reversed differential susceptibility. Individuals with
the minor allele for two or more DATI SNPs were associated with lower
ADHD scores when exposed to suboptimal prenatal environmental
factors, compared to an increase in ADHD scores for those with an
optimal prenatal environment. It could be speculated that if there are
genotypes that are more responsive to environmental exposures there
could be genotypes that are resistant to their influence. Further research
is required to determine if there are other potential protective factors
for those exposed to prenatal adversities.

Interestingly, a recent study found results partially supporting the
differential susceptibility framework with DATI genotypes. Li and Lee
[79] found that the 9/10 genotype of the 40pb VNTR located in the
3’UTR was associated with increased sADHD only in the presence of
parental praise. Conversely parental negativity was associated with
increased sADHD only for the 9/9 genotype. Though this finding is not
in full support of the differential susceptibility theory, it does suggest
how parental behaviour may interact with the genotype of the child in
the formation of later behavioural problems.

A limitation of our study is the relatively small sample size. Due to
our use of the minor SNP allele, cell frequencies for the minor SNP
group were markedly reduced. For all significant associations the
sample size did not drop below 10 participants for any group. Due to
the resulting power limitations, the results should be interpreted with
some caution.

The predominant focus of gene-environment studies has been on
single time point measurements. This leaves a large gap in the literature
on the impact of developmental change, whereby genetic and en-
vironmental factors may impact certain stages of development and not
others. Combined with recent evidence from DNA methylation and
DAT1 studies, age dependent genetic susceptibility to ADHD symptoms
is an area that needs further focus.

In conclusion, we provide initial evidence that being born SGA
moderates the effect of SNPs in DAT1 (a gene previously associated
with ADHD) on the risk for ADHD symptoms. A potential protective
effect of individuals born SGA with minor alleles for certain DAT1
variants was found on symptoms of ADHD at 3.5 years of age. While our
study did not support the differential susceptibility framework, it does
provide useful information on the effects of a suboptimal environment
on genetic variants. These findings help to explain some of the het-
erogeneity in ADHD outcomes for children born SGA, and add to cur-
rent knowledge of prenatal determinants of SADHD.
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